初二几何题目一道【 在线等 很急!!!!!!!!!!!!!!!!!】 20
已知△ABC中,∠BAC=90°,AB=AC,D、E为BC上两点,且∠DAE=45°。求证:DE²=BD²+EC²要添加辅助线!!!!!!h...
已知△ABC中,∠BAC=90°,AB=AC,D、E为BC上两点,且∠DAE=45°。
求证:DE²=BD²+EC² 要添加辅助线!!!!!!http://i.6.cn/cvbnm/a4/a9/18/cf3a45dfe695e5fe981e8a850d26de1d.jpg 展开
求证:DE²=BD²+EC² 要添加辅助线!!!!!!http://i.6.cn/cvbnm/a4/a9/18/cf3a45dfe695e5fe981e8a850d26de1d.jpg 展开
展开全部
过A作AF,使得AF=AD,且∠CAF=∠BAD,连接CF,相当于把右边那个三角形旋转过去(△CAF在△ABC的外面).
因为∠DAE=45°,所以∠BAD+∠CAE=45°,且∠CAF=∠BAD
则∠CAF+∠CAE=∠EAF=45°=∠DAE
因为∠EAF=∠DAE,AF=AD,AE=AE,所以
△DAE≌△FAE,则 DE=EF ,CF=BD
对于△ECF,∠ECF=90° -->EF^2=CE^2+CF^2
代入DE=EF ,CF=BD
所以,DE^2=CE^2+BD^2
因为∠DAE=45°,所以∠BAD+∠CAE=45°,且∠CAF=∠BAD
则∠CAF+∠CAE=∠EAF=45°=∠DAE
因为∠EAF=∠DAE,AF=AD,AE=AE,所以
△DAE≌△FAE,则 DE=EF ,CF=BD
对于△ECF,∠ECF=90° -->EF^2=CE^2+CF^2
代入DE=EF ,CF=BD
所以,DE^2=CE^2+BD^2
展开全部
辅助线是过B做一条垂直于BC的BF,其中使DF=DE。
思路是要证明DE²=BD²+EC² ,即要转化为DF²=BD²+EC² ,很明显由做的辅助线,你可以想到DF²=BD²+BF² ,这道题就是转化为证明EC=BF,再由已知可得,即证明三角形ABF和三角形AEC全等。又因为AB=AC,很容易得到角ACE=角ABF=45°,这也就是再找一个条件,就可以全等了,嘴容易想到的是角边角全等,也就是需要证明角BAF=角CAE。
下面就是证明这两个角相等了
因为角DAE=45°,所以角BAD+角EAC=45°,再继续证明三角形ADF与三角形ADE全等就可以得出角DAE=角DAF=45°,这样就可以得到我们需要证明的了。
于是问题的关键就在于证明 三角形ADF与三角形ADE全等。
先给你提示到这里,你先证明下,看看可以证明出来不。
一个字一个字敲出来的,希望对你有帮助!
思路是要证明DE²=BD²+EC² ,即要转化为DF²=BD²+EC² ,很明显由做的辅助线,你可以想到DF²=BD²+BF² ,这道题就是转化为证明EC=BF,再由已知可得,即证明三角形ABF和三角形AEC全等。又因为AB=AC,很容易得到角ACE=角ABF=45°,这也就是再找一个条件,就可以全等了,嘴容易想到的是角边角全等,也就是需要证明角BAF=角CAE。
下面就是证明这两个角相等了
因为角DAE=45°,所以角BAD+角EAC=45°,再继续证明三角形ADF与三角形ADE全等就可以得出角DAE=角DAF=45°,这样就可以得到我们需要证明的了。
于是问题的关键就在于证明 三角形ADF与三角形ADE全等。
先给你提示到这里,你先证明下,看看可以证明出来不。
一个字一个字敲出来的,希望对你有帮助!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1. 助线是过B做一条垂直于BC的BF,其中使DF=DE。
思路是要证明DE²=BD²+EC² ,即要转化为DF²=BD²+EC² ,很明显由做的辅助线,你可以想到DF²=BD²+BF² ,这道题就是转化为证明EC=BF,再由已知可得,即证明三角形ABF和三角形AEC全等。又因为AB=AC,很容易得到角ACE=角ABF=45°,这也就是再找一个条件,就可以全等了,嘴容易想到的是角边角全等,也就是需要证明角BAF=角CAE。
下面就是证明这两个角相等了
因为角DAE=45°,所以角BAD+角EAC=45°,再继续证明三角形ADF与三角形ADE全等就可以得出角DAE=角DAF=45°,这样就可以得到我们需要证明的了。
于是问题的关键就在于证明 三角形ADF与三角形ADE全等。
先给你提示到这里,你先证明下,看看可以证明出来不。 2 过A作AF,使得AF=AD,且∠CAF=∠BAD,连接CF,相当于把右边那个三角形旋转过去(△CAF在△ABC的外面).
因为∠DAE=45°,所以∠BAD+∠CAE=45°,且∠CAF=∠BAD
则∠CAF+∠CAE=∠EAF=45°=∠DAE
因为∠EAF=∠DAE,AF=AD,AE=AE,所以
△DAE≌△FAE,则 DE=EF ,CF=BD
对于△ECF,∠ECF=90° -->EF^2=CE^2+CF^2
代入DE=EF ,CF=BD
所以,DE^2=CE^2+BD^2
思路是要证明DE²=BD²+EC² ,即要转化为DF²=BD²+EC² ,很明显由做的辅助线,你可以想到DF²=BD²+BF² ,这道题就是转化为证明EC=BF,再由已知可得,即证明三角形ABF和三角形AEC全等。又因为AB=AC,很容易得到角ACE=角ABF=45°,这也就是再找一个条件,就可以全等了,嘴容易想到的是角边角全等,也就是需要证明角BAF=角CAE。
下面就是证明这两个角相等了
因为角DAE=45°,所以角BAD+角EAC=45°,再继续证明三角形ADF与三角形ADE全等就可以得出角DAE=角DAF=45°,这样就可以得到我们需要证明的了。
于是问题的关键就在于证明 三角形ADF与三角形ADE全等。
先给你提示到这里,你先证明下,看看可以证明出来不。 2 过A作AF,使得AF=AD,且∠CAF=∠BAD,连接CF,相当于把右边那个三角形旋转过去(△CAF在△ABC的外面).
因为∠DAE=45°,所以∠BAD+∠CAE=45°,且∠CAF=∠BAD
则∠CAF+∠CAE=∠EAF=45°=∠DAE
因为∠EAF=∠DAE,AF=AD,AE=AE,所以
△DAE≌△FAE,则 DE=EF ,CF=BD
对于△ECF,∠ECF=90° -->EF^2=CE^2+CF^2
代入DE=EF ,CF=BD
所以,DE^2=CE^2+BD^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询