如图,在梯形ABCD中,AB//CD,∠BCD=90°,且AB=1,BC=2,tan=∠ADC=2.

2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时... 2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论
3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求∠BEF的度数
展开
haoxiang009
2010-12-08 · TA获得超过9630个赞
知道小有建树答主
回答量:761
采纳率:0%
帮助的人:894万
展开全部
1、△ECF是等腰直角三角形
过点A作AG垂直DC垂足为G,可知AG=BC=2,CG=AB=1,
由,tan∠ADC=2. 得 AG:DG=2:1,
所以DG=1,所以DC=BC,
因∠EDC=∠FBC,DE=BF,
所以三角形DEC全等三角形BFC
所以CE=CF,∠BCF=∠DCE,
因∠DCB=∠DCE+∠ECB=90°,所以∠BCF+∠ECB=∠ECF=90°,
所以三角形ECF是等腰直角三角形
2、由1可知,∠FEC=∠CFE=45°,因∠BEC=135°,
所以∠BEF=∠BEC-∠FEC= 90°. (注,此角角度与BE:CE=1:2无关)
lsw1919
2012-12-23
知道答主
回答量:47
采纳率:0%
帮助的人:12.5万
展开全部
】(1)过A点作AH⊥DC
在RT△AHD中,
tan∠ADC=AH/HD=2
∵AH=BC=2
∴HD=AH/2=2/2=1
又AB=HC=1
∴DC=HD=HC=1+1=2
∴DC=BC
(2)在△EDC和△FBC中
DC=BC
且∠EDC=∠FBC,DE=BF
∴△EDC≌△FBC (SAS)
∴EC=FC
且∠ECD=∠FCB
而∠BCD=90°
∴∠ECF=90°
故△ECF是等腰直角三角形
(3)∵∠CEF=45°,∠BEC=135 °
∴∠BEF=90°
EC=2BE
∴EF=√2EC=2√2BE
BF=3BE
在RT△BEF中
sin∠BFE=BE/BF=1/3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式