需要详细步骤。 谢谢。
需要详细步骤。在线等。想要晚上用。2002002.设矩阵相似A=001与B0y0相似..01X00-1求X,y求一个可逆矩阵P,使P-1AP=B001设矩阵A=X1Y可对...
需要详细步骤。
在线等。
想要晚上用。
2 0 0 2 0 0
2.设矩阵相似A= 0 0 1 与B 0 y 0 相似..
0 1 X 0 0 -1
求X, y
求一个可逆矩阵P,使P-1AP=B
0 0 1
设矩阵A= X 1 Y 可对角化,求X和Y应该满足处理提问 展开
在线等。
想要晚上用。
2 0 0 2 0 0
2.设矩阵相似A= 0 0 1 与B 0 y 0 相似..
0 1 X 0 0 -1
求X, y
求一个可逆矩阵P,使P-1AP=B
0 0 1
设矩阵A= X 1 Y 可对角化,求X和Y应该满足处理提问 展开
展开全部
答:
1.
det|λE-A|=λ^3-(2+x)λ^2+(2x-1)λ+2=f(λ)
因为A与B相似,即A,B特征值相等。λ=-1代入得f(-1)=0即x=0。
f(λ)=λ^3-2λ^2-λ+2=(λ-2)(λ+1)(λ-1)
所以特征值是2,1,-1。所以y=1
即x=0,y=1。
分别将λ=2,λ=1,λ=-1代入|A-λE|,得特征向量分别为(1,0,0)T,(0,1,1)T,(0,1,-1)T.
所以P=
1 0 0
0 1 1
0 1 -1
2.
矩阵A的特征多项式det|λE-A|=(λ-1)^2(λ+1),特征值λ1=λ2=1,λ3=-1。
若A可对角化,则对于二重根λ1=λ2=1,A有两个线性无关的特征向量。
对应的线性齐次方程组(E-A)X=0的系数矩阵(E-A)秩为1。
化简有:
1 0 -1
0 0 x+y
0 0 0
则x+y=0。
所以若A可对角化,则x+y=0.
1.
det|λE-A|=λ^3-(2+x)λ^2+(2x-1)λ+2=f(λ)
因为A与B相似,即A,B特征值相等。λ=-1代入得f(-1)=0即x=0。
f(λ)=λ^3-2λ^2-λ+2=(λ-2)(λ+1)(λ-1)
所以特征值是2,1,-1。所以y=1
即x=0,y=1。
分别将λ=2,λ=1,λ=-1代入|A-λE|,得特征向量分别为(1,0,0)T,(0,1,1)T,(0,1,-1)T.
所以P=
1 0 0
0 1 1
0 1 -1
2.
矩阵A的特征多项式det|λE-A|=(λ-1)^2(λ+1),特征值λ1=λ2=1,λ3=-1。
若A可对角化,则对于二重根λ1=λ2=1,A有两个线性无关的特征向量。
对应的线性齐次方程组(E-A)X=0的系数矩阵(E-A)秩为1。
化简有:
1 0 -1
0 0 x+y
0 0 0
则x+y=0。
所以若A可对角化,则x+y=0.
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询