3个回答
展开全部
解:设首项为b1,由题知,b(n+1)-1=(b(n)-1)/(2-b(n))
(b(n+1)-1)/(b(n)-1)=1/(2-b(n))
(b(n)-1)/(b(n+1)-1)=2-b(n)
1/(b(n+1)-1)=(2-b(n))/(b(n)-1)=-1+1/(b(n)-1)
1/(b(n+1)-1)-1/(b(n)-1) =-1
如果b1=1,则由题知,数列{b(n)}为1 的常数列。
b1≠1,数列{1/(b(n)-1)}是散盯首项为1/(b1-1),公差为-1的等滑清差数列。
即 1/(b(n)-1)=1/(b1-1) -(n-1)=b1/(b1-1)-n 得 b(n)=(b1-1)/[b1-n*(b1-1)] + 1
谢谢信掘前!
(b(n+1)-1)/(b(n)-1)=1/(2-b(n))
(b(n)-1)/(b(n+1)-1)=2-b(n)
1/(b(n+1)-1)=(2-b(n))/(b(n)-1)=-1+1/(b(n)-1)
1/(b(n+1)-1)-1/(b(n)-1) =-1
如果b1=1,则由题知,数列{b(n)}为1 的常数列。
b1≠1,数列{1/(b(n)-1)}是散盯首项为1/(b1-1),公差为-1的等滑清差数列。
即 1/(b(n)-1)=1/(b1-1) -(n-1)=b1/(b1-1)-n 得 b(n)=(b1-1)/[b1-n*(b1-1)] + 1
谢谢信掘前!
展开全部
b2=1/陵圆(2-b1),b3=1/{2-1/局汪悔(2-b1)}=(2-b1)/(3-2b1),依次算,可以发现bn=(n-1-(n-2)b1)/(n-(n-1)b1)当然n≥2,写出这个式子带上前面b2和b3的式子就行了桐正
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
推几项就能发现规律了,b(n)=1/(2-b(n-1))=(2-b(n-2))/(3-2b(n-2))=(3-2b(n-3))/(4-3b(n-3))=……=(n-1-(n-2)b1)/(n-(n-1)b1),然后代入b1就行闭绝了:-) ,这种题以前做过很多,没有什么太好的方法,只能推几项试试看,所以以后碰到握派类似一眼看不出规律的就要往后段态贺推几项事实看喽
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询