高数微积分,第三题,求导数,谢谢!!
2个回答
展开全部
先对f(x)求导,
f(x)=x(x+1)(x+2)...(x+n)
f(x)'=[(x+1)(x+2)...(x+n)]+x[(x+2)...(x+n)]+...+x(x+1)(x+2)...(x+n-1)
df(x)|0|=[(0+1)(0+2)...(0+n)]+0[(0+2)...(0+n)]+...+0(0+1)(0+2)...(0+n-1)
=[(0+1)(0+2)...(0+n)]
=1+2+...+n
=n(n+1)/2
f(x)=x(x+1)(x+2)...(x+n)
f(x)'=[(x+1)(x+2)...(x+n)]+x[(x+2)...(x+n)]+...+x(x+1)(x+2)...(x+n-1)
df(x)|0|=[(0+1)(0+2)...(0+n)]+0[(0+2)...(0+n)]+...+0(0+1)(0+2)...(0+n-1)
=[(0+1)(0+2)...(0+n)]
=1+2+...+n
=n(n+1)/2
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询