关于微分中值定理的证明题~~~~

我就是DPS
2010-12-07 · 超过12用户采纳过TA的回答
知道答主
回答量:24
采纳率:0%
帮助的人:0
展开全部
第一题:
设f(x)原函数为F(x),则f(x)在[a,b]上的积分=F(b)-F(a)=0
现在只要在(a,b)上找一点x0,使得F(x0)=F(a)即可,这样由XX(貌似是罗尔?)定理,在[a,x0]、[x0,b]上就分别有一点使F(x)导数为零,即f(x)=0
在[a,b]上,xf(x)dx的积分=xdF(x)的积分=xF(x) - [ F(x)dx的积分 ] = (b-a)*F(a) - [F(x)dx的积分] = 0
由XX中值定理(貌似柯西?),存在一个x0属于(a,b),使得F(x)dx的积分等于(b-a)*F(x0)
代入上式可知F(x0)=F(a) 就是所求的分割点

第二题
将结论改为f(c)+cf'(c)=0,注意到等号左边是[xf(x)]'形式,即求一点c使得这个点上xf(x)导数为零,由XX定理,等价于在(0,1)上找互异两点x1,x2使x1f(x1) = x2f(x2)
类似上题,剩下的你自己想想吧。我要吃饭去了...回来再改
这类题找合适的原函数的技巧需要总结。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式