如何证明线性方程组A^x=0和A^x=0同解

 我来答
修北养39110
2017-01-11
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
A是实方阵吧.
证明:记A'=A^T
(1)设X1是AX=0的解,则AX1=0
所以A'AX1=A'(AX1)=A'0=0
所以X1是A'AX=0的解.
故 Ax=0 的解是 A'AX=0 的解.
(2)设X2是A'AX=0的解,则A'AX2=0
等式两边左乘 X2'得 X2'A'AX2=0
所以有 (Ax2)'(Ax2)=0
所以 AX2=0.[长度为0的实向量必为0向量,此时用到A是实矩阵]
所以X2是AX=0的解.
故A'AX=0的解是AX=0的解.
综上知齐次线性方程组AX=0与A'AX=O是同解方程组.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式