2个回答
展开全部
如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3 ).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的速度分别为1, ,2 (长度单位/秒)·一直尺的上边缘l从x轴的位置开始以33 (长度单位/秒)的速度向上平行移动(即移动过程中保持l‖x轴),且分别与OB,AB交于E,F两点·设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
(1)过A,B两点的直线解析式是 ▲ ;
(2)当t=4时,点P的坐标为 ▲ ;当t = ▲ ,点P与点E重合;
(3)① 作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的 值是多少?
② 当t=2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在, 求出点Q的坐标;
若不存在,请说明理由.
这题是道中考的最后一道题,算难的,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询