1个回答
展开全部
将分子分母同乘以分子得
{1+√(1-x^2)}/{1-√(1-x^2)}
=[1+2√(1-x²)+1-x²]/(1-1+x²)
=[2+2√(1-x²)-x²]/x²
=2/x²+2√(1-x²)/x²-1
因为 ∫[(2/x²)-1]dx=-2/x-x
现在求2√(1-x²)/x²的积分:
设x=siny, 则 dx=cosydy
∫[2√(1-x²)/x²]dx
=2∫[√(1-sin²y)*cosy/sin²y]dy
=2∫(cos²y/sin²y)dy
=2∫(1-sin²y)/sin²ydy
=2∫(csc²y-1)dy
=2(-ctgy-y)=-2√(1-x²)/x-2arcsinx
所以 原式的积分为
-2/x-x-2√(1-x²)/x-2arcsinx+C
{1+√(1-x^2)}/{1-√(1-x^2)}
=[1+2√(1-x²)+1-x²]/(1-1+x²)
=[2+2√(1-x²)-x²]/x²
=2/x²+2√(1-x²)/x²-1
因为 ∫[(2/x²)-1]dx=-2/x-x
现在求2√(1-x²)/x²的积分:
设x=siny, 则 dx=cosydy
∫[2√(1-x²)/x²]dx
=2∫[√(1-sin²y)*cosy/sin²y]dy
=2∫(cos²y/sin²y)dy
=2∫(1-sin²y)/sin²ydy
=2∫(csc²y-1)dy
=2(-ctgy-y)=-2√(1-x²)/x-2arcsinx
所以 原式的积分为
-2/x-x-2√(1-x²)/x-2arcsinx+C
哎呦互动
2024-07-12 广告
2024-07-12 广告
当您光临我们的门店或参与活动时,只需轻松打开微信,对准我们提供的二维码一扫,即可参与激动人心的抽奖环节。奖品丰富多样,从精美小礼品到超值优惠券,应有尽有。我们致力于为您带来便捷、有趣的互动体验,让每一次扫码都成为一次惊喜的开启。感谢您的支持...
点击进入详情页
本回答由哎呦互动提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询