高中数学,立体几何
如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB=2,BC=2√2,E,F分别是AD,PC的中点.(Ⅰ)证明:PC⊥平面BEF;(Ⅱ)求平面...
如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB=2, BC= 2√2,E,F分别是AD,PC的中点.
(Ⅰ)证明:PC⊥平面BEF;
(Ⅱ)求平面BEF与平面BAP夹角的大小。 展开
(Ⅰ)证明:PC⊥平面BEF;
(Ⅱ)求平面BEF与平面BAP夹角的大小。 展开
展开全部
这题用向量解比较快,不知道你们学了没?
以PA、AB、AD为坐标轴,则:
P(0,0,2)、B(2,0,0).C(2,2√2,0)D(0,2,0)
又由于F为PC的中点则F(1,√2,1);E=(0,√2,0);
所向量PC=(2,2√2,-2);BF=(-1,√2,1);BE=(-2,√2,0);
所以PC*BF=-2+4-2=0,PC*BE=0;
即PC⊥BE,PC⊥BF,所以PC⊥平面BEF
2:
由已知可知AD为面PAB的法向量,AD=(0,2√2,0);
所以AD与PC的夹角即为两平面的夹角;
正弦角=(AD*PC)/(|AD|*|PC|)=8 / (4*2√2)=√2/2;
故夹角=45度、
谢谢,累死我了,加点分吧
以PA、AB、AD为坐标轴,则:
P(0,0,2)、B(2,0,0).C(2,2√2,0)D(0,2,0)
又由于F为PC的中点则F(1,√2,1);E=(0,√2,0);
所向量PC=(2,2√2,-2);BF=(-1,√2,1);BE=(-2,√2,0);
所以PC*BF=-2+4-2=0,PC*BE=0;
即PC⊥BE,PC⊥BF,所以PC⊥平面BEF
2:
由已知可知AD为面PAB的法向量,AD=(0,2√2,0);
所以AD与PC的夹角即为两平面的夹角;
正弦角=(AD*PC)/(|AD|*|PC|)=8 / (4*2√2)=√2/2;
故夹角=45度、
谢谢,累死我了,加点分吧
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询