不定积分 x的3次方加1分之三 为多少要详细过程~!!

牛牛爱教育
高粉答主

2019-05-26 · 我是教育小达人,乐于助人; 专注于分享科
牛牛爱教育
采纳数:900 获赞数:105778

向TA提问 私信TA
展开全部

解题过程如下:

扩展资料

如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。

因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

你爱我妈呀
2019-05-24 · TA获得超过8.6万个赞
知道小有建树答主
回答量:686
采纳率:100%
帮助的人:26万
展开全部

解答过程如下:

不定积分中函数的和的不定积分等于各个函数的不定积分的和。求不定积分时,被积函数中的常数因子可以提到积分号外面来。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

常用积分公式

1、∫1/(1+x^2) dx=arctanx+c   

2、∫1/√(1-x^2) dx=arcsinx+c   

3 、∫tanx dx=-In|cosx|+c   

4、∫cotx dx=In|sinx|+c   

5、∫secx dx=In|secx+tanx|+c   

6、∫cscx dx=In|cscx-cotx|+c   

7、∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+c   

8、∫1/√(x^2-a^2) dx=|In(x+√(x^2-a^2))|+c

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
滚雪球的秘密
高粉答主

2019-06-15 · 醉心答题,欢迎关注
知道大有可为答主
回答量:4152
采纳率:100%
帮助的人:107万
展开全部

解题的详细过程如图:

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

扩展资料:

1、常用的几种积分公式

(1)∫0dx=c

(2)∫x^udx=(x^(u+1))/(u+1)+c

(3)∫1/xdx=ln|x|+c

(4)∫a^xdx=(a^x)/lna+c

(5)∫e^xdx=e^x+c

(6)∫sinxdx=-cosx+c

2、一般定理

定理1:设f(x)在区间[a,b]上连续,那么f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,那么f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,那么f(x)在[a,b]上可积。



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
超过2字
推荐于2017-09-14 · TA获得超过3501个赞
知道小有建树答主
回答量:610
采纳率:0%
帮助的人:417万
展开全部

如图

或者查积分表

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式