1个回答
2017-09-27
展开全部
证明:(3n-1)/(2n+1)=[(3/2)(2n+1)-(1/2)]/(2n+1)=3/2-1/[2(2n+1)]
对任给的小正数ε,总存在N>0
当n>N时,│3/2-1/[2(2n+1)]-3/2│<ε,即1/(4n+2)<ε,n>1/4ε-1/2
取N=[1/4ε-1/2]+1
则当n>N时,│3/2-1/[2(2n+1)]-3/2│<ε恒成立
即极限为3/2
希望对你有所帮助 还望采纳~~~
对任给的小正数ε,总存在N>0
当n>N时,│3/2-1/[2(2n+1)]-3/2│<ε,即1/(4n+2)<ε,n>1/4ε-1/2
取N=[1/4ε-1/2]+1
则当n>N时,│3/2-1/[2(2n+1)]-3/2│<ε恒成立
即极限为3/2
希望对你有所帮助 还望采纳~~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询