高等数学的极限的有无与什么有关

 我来答
庄之云7S
2017-09-24 · TA获得超过2318个赞
知道小有建树答主
回答量:1896
采纳率:46%
帮助的人:138万
展开全部
(1) 分子分母同乘以 [√(2x)+2] [x^(2/3)+(2x)^(1/3)+2^(2/3)], 得
原式 = lim<x→2> 2(x-2)[x^(2/3)+(2x)^(1/3)+2^(2/3)] / {(x-2)[√(2x)+2]}
= lim<x→2> 2[x^(2/3)+(2x)^(1/3)+2^(2/3)] / [√(2x)+2]
= 2*3*2^(2/3) / 4 = (3/2)2^(2/3) = (3/2)4^(1/3), 选 C。
(2) lim<x→∞> 2xsin(1/x) = lim<x→∞>2sin(1/x)/(1/x) = 2, 选 B。
(3) 分子分母同乘以(1/x^2), 得
原式 = lim<x→∞> (1+1/x-1/x^2)/(x^2-3+1/x^2) = 0。
(4) 等价无穷小代换, 原式 = lim<x→0> x^3/x^3 = 1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式