利用矩阵的初等变换求解线性方程组
1个回答
展开全部
仅举一例:
x+y = 5
x - y= 1 写成增广矩阵形式:
[1 ,1 ,5;1,-1,1]
对其作初等变换:第一行乘以(-1)加到第二行上,增广矩阵变成:
[1,1,5;0,-2,-4]
对上述矩阵第二行除以(-2),矩阵变成:
[1,1,5;0,1,2]
再将上述矩阵第二行乘以(-1)加到第一行上去,得到新矩阵如下:
[1,0,3;0,1,2] 这就是最后的结果。把结果矩阵写成:
【1,0,3】
【0,1,2】
从中可以清楚地看出: x = 3,y = 2 。这正是我们所期望的结果!
利用初等变换解线性方程组就是将增广矩阵Z=【A, b】中的系数矩阵:
A化为单位矩阵E的过程,而方程右端项b的变换结果就是方程组的解。
对于更高阶线性方程组初等变换的解法也是如此,只不过过程更加繁杂。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询