八年级几何数学题

如图,D为Rt△ABC的斜边BC的中点,M,N分别在AB,AC边上,且∠MDN=90°,求证:BM²+CN²=MN².... 如图,D为Rt△ABC的斜边BC的中点,M,N分别在AB,AC边上,且∠MDN=90°,求证:BM²+CN²=MN². 展开
王顺来
2010-12-09 · 超过20用户采纳过TA的回答
知道答主
回答量:47
采纳率:0%
帮助的人:47.5万
展开全部
惭愧呀 都上大学了 这个题目还想了半天才做出来
过C作CG//AB延长MD交CG于K ∵AB//CG ∴∠ABD=∠BCG
∠BDM=∠CDK ∵BD=CD ∴△BDM≌△CDK则BM=CK,DM=DK
又因为MD⊥DN所以ND是MK的中垂线 所以MN=NK
因为AB⊥AC CK//AB 所以AC⊥CK 即∠ACK=90°
所以NC²+CK²=NK² 所以BM²+CN²=MN²
得到答案
你可以看看 最后表明下三角形BMD和三角形CDN不一定为等腰三角形是一般三角形也可以实现上面的等式
1173901763
2010-12-09
知道答主
回答量:39
采纳率:0%
帮助的人:28.5万
展开全部
可争得三角形BMD和三角形CDN都为等腰三角形(因为D为Rt△ABC的斜边BC的中点,∠MDN=90°,∠AMD=∠AND=∠BMD=∠CND,AB平行于DN,MD平行于AN,∠DBM=∠CDN,∠BDM=∠DCN,还要根据距形斜边上的中点到各点距离相等),BM=DM,DN=CN,用勾股定理,MD*MD+DN*DN=MN*MN,BM*BM+CN*CN=MN*MN
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秋_翎
2010-12-09 · TA获得超过419个赞
知道小有建树答主
回答量:144
采纳率:0%
帮助的人:0
展开全部
中线加倍法,延长MD到E,使得MD=DE,连接EC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式