求定积分,,,
2个回答
展开全部
令x=asint,则dx=acostdt
原式=∫(0,π/2) acostdt/(asint+acost)
=∫(0,π/2) costdt/(sint+cost)
=∫(0,π/2) [(sint+cost)+(cost-sint)]/2(sint+cost)dt
=(1/2)*∫(0,π/2) dt+(1/2)*∫(0,π/2) (cost-sint)/(sint+cost)dt
=(1/2)*t|(0,π/2)+(1/2)*∫(0,π/2) d(sint+cost)/(sint+cost)
=π/4+(1/2)*ln|sint+cost||(0,π/2)
=π/4
原式=∫(0,π/2) acostdt/(asint+acost)
=∫(0,π/2) costdt/(sint+cost)
=∫(0,π/2) [(sint+cost)+(cost-sint)]/2(sint+cost)dt
=(1/2)*∫(0,π/2) dt+(1/2)*∫(0,π/2) (cost-sint)/(sint+cost)dt
=(1/2)*t|(0,π/2)+(1/2)*∫(0,π/2) d(sint+cost)/(sint+cost)
=π/4+(1/2)*ln|sint+cost||(0,π/2)
=π/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询