线性代数,矩阵的运算
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
展开全部
应是 AP = P∧, 则 A = P∧P^(-1)
(P, E) =
[1 1 1 1 0 0]
[1 0 -2 0 1 0]
[1 -1 1 0 0 1]
初等行变换为
[1 1 1 1 0 0]
[0 -1 -3 -1 1 0]
[0 -2 0 -1 0 1]
初等行变换为
[1 0 1 1/2 0 1/2]
[0 1 0 1/2 0 -1/2]
[0 0 -3 -1/2 1 -1/2]
初等行变换为
[1 0 1 1/3 1/3 1/3]
[0 1 0 1/2 0 -1/2]
[0 0 1 1/6 -1/3 1/6]
P^(-1) =
[1/3 1/3 1/3]
[1/2 0 -1/2]
[1/6 -1/3 1/6]
A^n = P∧P^(-1)P∧P^(-1)P∧P^(-1) ...... P∧P^(-1)P∧P^(-1)
= P∧^nP^(-1)
φ(A) = A^8(5E-6A+A^2) = 5A^8 - 6A^9 + A^10
= 5P∧^8P^(-1) - 6P∧^9P^(-1) + P∧^10P^(-1)
= P(5∧^8 - 6∧^9 +∧^10)P^(-1)
= Pdiag(12, 0, 0)P^(-1) =
[4 4 4]
[4 4 4]
[4 4 4]
(P, E) =
[1 1 1 1 0 0]
[1 0 -2 0 1 0]
[1 -1 1 0 0 1]
初等行变换为
[1 1 1 1 0 0]
[0 -1 -3 -1 1 0]
[0 -2 0 -1 0 1]
初等行变换为
[1 0 1 1/2 0 1/2]
[0 1 0 1/2 0 -1/2]
[0 0 -3 -1/2 1 -1/2]
初等行变换为
[1 0 1 1/3 1/3 1/3]
[0 1 0 1/2 0 -1/2]
[0 0 1 1/6 -1/3 1/6]
P^(-1) =
[1/3 1/3 1/3]
[1/2 0 -1/2]
[1/6 -1/3 1/6]
A^n = P∧P^(-1)P∧P^(-1)P∧P^(-1) ...... P∧P^(-1)P∧P^(-1)
= P∧^nP^(-1)
φ(A) = A^8(5E-6A+A^2) = 5A^8 - 6A^9 + A^10
= 5P∧^8P^(-1) - 6P∧^9P^(-1) + P∧^10P^(-1)
= P(5∧^8 - 6∧^9 +∧^10)P^(-1)
= Pdiag(12, 0, 0)P^(-1) =
[4 4 4]
[4 4 4]
[4 4 4]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询