1个回答
展开全部
∫(-2→2)x*ln(1+e^x)dx
=∫(-2→0)x*ln(1+e^x)dx +∫(0→2)x*ln(1+e^x)dx
∫(-2→0)x*ln(1+e^x)dx
设y=-x,x=-y
原式=∫(2→0)(-y)*ln[1+e^(-y)]d(-y)
=∫(2→0)y*ln[1+e^(-y)]dy
=∫(2→0)y*ln[(e^y+1)/e^y]dy
=∫(2→0)y*ln(e^y+1)dy -∫(2→0)y*ln(e^y)dy
=-∫(0→2)y*ln(1+e^y)dy +∫(0→2)y^2dy
即∫(-2→0)x*ln(1+e^x)dx=-∫(0→2)x*ln(1+e^x)dx +∫(0→2)x^2dx
故∫(-2→2)x*ln(1+e^x)dx
=∫(-2→0)x*ln(1+e^x)dx +∫(0→2)x*ln(1+e^x)dx
=-∫(0→2)x*ln(1+e^x)dx +∫(0→2)x^2dx +∫(0→2)x*ln(1+e^x)dx
=∫(0→2)x^2dx
=[x^3/3]|(0→2)
=2^3/3
=8/3
=∫(-2→0)x*ln(1+e^x)dx +∫(0→2)x*ln(1+e^x)dx
∫(-2→0)x*ln(1+e^x)dx
设y=-x,x=-y
原式=∫(2→0)(-y)*ln[1+e^(-y)]d(-y)
=∫(2→0)y*ln[1+e^(-y)]dy
=∫(2→0)y*ln[(e^y+1)/e^y]dy
=∫(2→0)y*ln(e^y+1)dy -∫(2→0)y*ln(e^y)dy
=-∫(0→2)y*ln(1+e^y)dy +∫(0→2)y^2dy
即∫(-2→0)x*ln(1+e^x)dx=-∫(0→2)x*ln(1+e^x)dx +∫(0→2)x^2dx
故∫(-2→2)x*ln(1+e^x)dx
=∫(-2→0)x*ln(1+e^x)dx +∫(0→2)x*ln(1+e^x)dx
=-∫(0→2)x*ln(1+e^x)dx +∫(0→2)x^2dx +∫(0→2)x*ln(1+e^x)dx
=∫(0→2)x^2dx
=[x^3/3]|(0→2)
=2^3/3
=8/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询