高二数学已知抛物线y²=2px(p>0),过动点M(a,0)且斜率为1的直线L与抛物线交与不同的两点A.B,|AB\≤2
已知抛物线y²=2px(p>0),过动点M(a,0)且斜率为1的直线L与抛物线交与不同的两点A.B,|AB\≤2p(1)求a的取值范围(2)若线段AB的垂直平分...
已知抛物线y²=2px(p>0),过动点M(a,0)且斜率为1的直线L与抛物线交与不同的两点A.B,|AB\≤2p
(1)求a的取值范围
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值
请写一下过程
谢谢 展开
(1)求a的取值范围
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值
请写一下过程
谢谢 展开
2个回答
展开全部
(1)直线l:y=x-a,代入y^2=2px,
得x^2-2(a+p)x+a^2=0.
设A(x1,y1),B(x2,y2),
0<|AB|=√2|x1-x2|=√[8p(p+2a)]≤2p
∴0<8p(p+2a)≤4p^2
解得:-p/2<a ≤-p/4
(2)设AB中点为Q,AB与x轴交于M,则△QMN为等腰直角三角形.
设Q(x0,x0-a),则x0=(x1+x2)/2=a+p,故Q(a+p,p).
∴|QM|=|QN|=√2p
∴S△NAB=1/2*|AB|*|QN|≤1/2*2p*√2p=√2p^2
得x^2-2(a+p)x+a^2=0.
设A(x1,y1),B(x2,y2),
0<|AB|=√2|x1-x2|=√[8p(p+2a)]≤2p
∴0<8p(p+2a)≤4p^2
解得:-p/2<a ≤-p/4
(2)设AB中点为Q,AB与x轴交于M,则△QMN为等腰直角三角形.
设Q(x0,x0-a),则x0=(x1+x2)/2=a+p,故Q(a+p,p).
∴|QM|=|QN|=√2p
∴S△NAB=1/2*|AB|*|QN|≤1/2*2p*√2p=√2p^2
展开全部
推出:AB直线:y=(x-a)① 联立抛物线方程:x²-(2a+2p)x+a²=0→x1x2=a²,x1+x2=2a+2p,y1+y2=2p →AB²=√(1+k²)*(x1+x2)²-4x1x2=8√2*(ap+p²)② 因为:|AB|<2p→AB²≤4p²③ ②③→a≤p(√2-4)/4 (2):得中点M(a+p,p) 得AB垂直平分线:y-p=-(x-a-p)④ →N(2p+a,0)和AB直线与x轴交点C(a,0),NC=2p →(y1>0,y2<0),S△=S△ANC+S△BNC=NC/2*(y1-y2)=4ap-2p²=m 讨论m,m=-2(p-a)²+2a² →a≠p,→a=p(√2-4)/4取得最大值 →Smax=(√2-6)p²
参考资料: 倘若符合基本,请及时采纳哦!
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询