急急急 求大神解答 谢谢!!!
1个回答
展开全部
∫ arctanx /x^2 dx
=-∫ arctanx d(1/x)
=-arctanx/x + ∫ dx/[x(1+x^2)]
=-arctanx/x + ∫ [1/x - x/(1+x^2) ] dx
=-arctanx/x + ln|x| - (1/2)ln|1+x^2| +C
=-arctanx/x + ln|x/√(1+x^2) | +C
∫(1->∞) arctanx /x^2 dx
=[-arctanx/x + ln|x/√(1+x^2) |] | (1->∞)
=π/4 + (1/2)ln2 + lim(x->∞ ) { -arctanx/x + ln(x/√(1+x^2)) }
=π/4 + (1/2)ln2 + 0
=π/4 + (1/2)ln2
=-∫ arctanx d(1/x)
=-arctanx/x + ∫ dx/[x(1+x^2)]
=-arctanx/x + ∫ [1/x - x/(1+x^2) ] dx
=-arctanx/x + ln|x| - (1/2)ln|1+x^2| +C
=-arctanx/x + ln|x/√(1+x^2) | +C
∫(1->∞) arctanx /x^2 dx
=[-arctanx/x + ln|x/√(1+x^2) |] | (1->∞)
=π/4 + (1/2)ln2 + lim(x->∞ ) { -arctanx/x + ln(x/√(1+x^2)) }
=π/4 + (1/2)ln2 + 0
=π/4 + (1/2)ln2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询