高中数学题数列 过程
展开全部
解:
设等差数列公差为d。
S5=5a1+10d=5(a1+2d)=5a3=70
a3=14
a2、a7、a22成等比数列,则
a7²=a2×a22
(a3+4d)²=(a3-d)(a3+19d)
(14+4d)²=(14-d)(14+19d)
整理,得
d²-4d=0
d(d-4)=0
d=0(与已知矛盾,舍去)或d=4
a1=a3-2d=14-8=6
an=a1+(n-1)d=6+4(n-1)=4n+2
数列{an}的通项公式为an=4n+2。
2.
Sn=na1+n(n-1)d/2=6n+4n(n-1)/2=2n(n+2)
1/Sn=1/[2n(n+2)]=(1/4)[1/n-1/(n+2)]
Tn=1/S1+1/S2+...+1/Sn=(1/4)[1-1/3+1/2-1/4+1/3-1/5+...+1/n-1/(n+2)]
=(1/4)[(1+1/2+1/3+...+1/n)-(1/3+1/4+...+1/(n+2))]
=(1/4)[1+1/2-1/(n+1)-1/(n+2)]
=(3/8)-(1/4)[1/(n+1)+1/(n+2)]
随n增大,1/(n+1)和1/(n+2)都递减,Tn递增,当n=1时,Tn取得最小值
Tmin=(3/8)-(1/4)(1/2+1/3)=(3/8)-(5/24)=1/6
当n->+无穷大时,1/(n+1)和1/(n+2)都大于0,且趋向于0,Tn<3/8且Tn->3/8-0=3/8
综上,得1/6≤Tn<3/8
设等差数列公差为d。
S5=5a1+10d=5(a1+2d)=5a3=70
a3=14
a2、a7、a22成等比数列,则
a7²=a2×a22
(a3+4d)²=(a3-d)(a3+19d)
(14+4d)²=(14-d)(14+19d)
整理,得
d²-4d=0
d(d-4)=0
d=0(与已知矛盾,舍去)或d=4
a1=a3-2d=14-8=6
an=a1+(n-1)d=6+4(n-1)=4n+2
数列{an}的通项公式为an=4n+2。
2.
Sn=na1+n(n-1)d/2=6n+4n(n-1)/2=2n(n+2)
1/Sn=1/[2n(n+2)]=(1/4)[1/n-1/(n+2)]
Tn=1/S1+1/S2+...+1/Sn=(1/4)[1-1/3+1/2-1/4+1/3-1/5+...+1/n-1/(n+2)]
=(1/4)[(1+1/2+1/3+...+1/n)-(1/3+1/4+...+1/(n+2))]
=(1/4)[1+1/2-1/(n+1)-1/(n+2)]
=(3/8)-(1/4)[1/(n+1)+1/(n+2)]
随n增大,1/(n+1)和1/(n+2)都递减,Tn递增,当n=1时,Tn取得最小值
Tmin=(3/8)-(1/4)(1/2+1/3)=(3/8)-(5/24)=1/6
当n->+无穷大时,1/(n+1)和1/(n+2)都大于0,且趋向于0,Tn<3/8且Tn->3/8-0=3/8
综上,得1/6≤Tn<3/8
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询