一圆锥,底面半径为r.高为h.一个内接正方体.求这个正方体的棱长

手机用户03593
2013-12-14 · 超过60用户采纳过TA的回答
知道答主
回答量:108
采纳率:100%
帮助的人:117万
展开全部
已知圆锥的底面半径为r,高为h,正方体ABCD-次A次B次C次D内接于圆锥,求这个正方体的棱长。取圆锥的轴截面DEF,D为顶点,DG垂直EF,则DG=h,GE=GF=r 设正方体与DG交于H,过H作HI//EF 因为 正方体内接于圆锥 所以 在过HI,平行于底面的截面内正方形内接于圆H 所以 HI=√2/2AB 因为 HI//EF 所以 DH/DG=HI/GF 因为 GH=AB,DH=DG-GH=h-AB,DG=h,HI=√2/2AB,GF=r 所以 AB=hr/(√2/2h+r) 所以 这个正方体的棱长为hr/(√2/2h+r)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式