已知a,b是正数,求证a^2+4b^2+1/ab≥4

皮皮鬼0001
2013-11-03 · 经历曲折坎坷,一生平淡。
皮皮鬼0001
采纳数:38061 获赞数:137597

向TA提问 私信TA
展开全部
证明
a^2+4b^2+1-4ab
=a^2-4ab+4b^2+1
=(a-2b)^2+1
>0
故a^2+4b^2+1-4ab>0
即a^2+4b^2+1>4ab
由a,b是正数,即ab>0
即(a^2+4b^2+1)/ab>4

a,b是正数,求证a^2+4b^2+1/ab≥4成立
百度网友991c06587
2013-11-03
知道答主
回答量:35
采纳率:0%
帮助的人:10.6万
展开全部
楼主先把式子化简为a^2+4b^2+1≥4ab
移向a^2-4ab+4b^2+1≥1
分解公因式为(a-2b)^2≥1
∵(a-2b)^2大于等于0
∴(a-2b)^2+1≥1
原式成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式