已知f(x)是以2为周期的偶函数,且当x属于[0,1]时,f(x)=x,若在区间[-1,3]内,函数
g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是?求详细解答,O(∩_∩)O谢谢!...
g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是?
求详细解答,O(∩_∩)O谢谢! 展开
求详细解答,O(∩_∩)O谢谢! 展开
1个回答
展开全部
x在[0,1],f(x)=x
由于f(x)是偶函数,x在[-1,0],f(x)=-x
f(x)是周期为2的函数 f(2)=f(0)=0
函数解析式:y=-x+2
x在[2,3]时,函数解析式:y=x-2
g(x)仍为一次函数,有4个零点,故在四段内各有一个零点。
x在[-1,0) g(x)=-x-kx-k=-(k+1)x-k
令g(x)=0 x=-k/(k+1)
-1≤-k/(k+1)<0
解得k>0
x在(0,1] g(x)=x-kx-k=(1-k)x-k
令g(x)=0 x=k/(1-k)
0<k/(1-k)≤1
解的0<k≤1/2
x在(1,2] g(x)=-x+2-kx-k=-(k+1)x+2-k
令g(x)=0 x=(2-k)/(k+1)
1<(2-k)/(k+1)≤2
解的0≤k<1/2
x在(2,3] g(x)=x-2-kx-k=(1-k)x-2-k
令g(x)=0 x=(k+2)/(1-k)
2<(k+2)/(1-k)≤3
解的0<k≤1/4
综上,k的取值范围为:0<k≤1/4
由于f(x)是偶函数,x在[-1,0],f(x)=-x
f(x)是周期为2的函数 f(2)=f(0)=0
函数解析式:y=-x+2
x在[2,3]时,函数解析式:y=x-2
g(x)仍为一次函数,有4个零点,故在四段内各有一个零点。
x在[-1,0) g(x)=-x-kx-k=-(k+1)x-k
令g(x)=0 x=-k/(k+1)
-1≤-k/(k+1)<0
解得k>0
x在(0,1] g(x)=x-kx-k=(1-k)x-k
令g(x)=0 x=k/(1-k)
0<k/(1-k)≤1
解的0<k≤1/2
x在(1,2] g(x)=-x+2-kx-k=-(k+1)x+2-k
令g(x)=0 x=(2-k)/(k+1)
1<(2-k)/(k+1)≤2
解的0≤k<1/2
x在(2,3] g(x)=x-2-kx-k=(1-k)x-2-k
令g(x)=0 x=(k+2)/(1-k)
2<(k+2)/(1-k)≤3
解的0<k≤1/4
综上,k的取值范围为:0<k≤1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询