求解!好人一生平安
1个回答
展开全部
证明:由∠CBA的角平分线交圆O于点D,得 ∠CBD=∠ABD
则 弧AD=弧CD(同圆中相等的圆周角所对的弧相等)
则∠DAC=∠DBA(同圆中相等的弧所对的圆周角相等)
证明:由AB为直径,得 ∠ADB=90° 且 DE⊥AB于点E
则 ∠ADE+∠DAB=∠DAB+∠DBA=90°
即 ∠ADE=∠DBA=∠DAC(第一问已证) 则 AP=DP
同理,得 ∠PDF=∠DFP 则 DP=PF
∴ AP=PF 故 P是线段AF的中点
解:由∠DAC=∠DBA(第一问已证),∠ADF=∠BDA=90°,得
△DAF∽△DBA 则 AF/BA=AD/BD(相似三角形性质)
在Rt△ABD中,,AB=10,AF=2/15,∠ABF=∠ABD
则 tan∠ABF=AD/BD=AF/AB=1/75
记得采纳我的答案哦,祝你学习进步
则 弧AD=弧CD(同圆中相等的圆周角所对的弧相等)
则∠DAC=∠DBA(同圆中相等的弧所对的圆周角相等)
证明:由AB为直径,得 ∠ADB=90° 且 DE⊥AB于点E
则 ∠ADE+∠DAB=∠DAB+∠DBA=90°
即 ∠ADE=∠DBA=∠DAC(第一问已证) 则 AP=DP
同理,得 ∠PDF=∠DFP 则 DP=PF
∴ AP=PF 故 P是线段AF的中点
解:由∠DAC=∠DBA(第一问已证),∠ADF=∠BDA=90°,得
△DAF∽△DBA 则 AF/BA=AD/BD(相似三角形性质)
在Rt△ABD中,,AB=10,AF=2/15,∠ABF=∠ABD
则 tan∠ABF=AD/BD=AF/AB=1/75
记得采纳我的答案哦,祝你学习进步
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询