求解!好人一生平安

 我来答
忠鸣惊人
2014-03-05 · TA获得超过4万个赞
知道小有建树答主
回答量:2.1万
采纳率:95%
帮助的人:2437万
展开全部
证明:由∠CBA的角平分线交圆O于点D,得 ∠CBD=∠ABD
则 弧AD=弧CD(同圆中相等的圆周角所对的弧相等)
则∠DAC=∠DBA(同圆中相等的弧所对的圆周角相等)
证明:由AB为直径,得 ∠ADB=90° 且 DE⊥AB于点E
则 ∠ADE+∠DAB=∠DAB+∠DBA=90°
即 ∠ADE=∠DBA=∠DAC(第一问已证) 则 AP=DP
同理,得 ∠PDF=∠DFP 则 DP=PF
∴ AP=PF 故 P是线段AF的中点
解:由∠DAC=∠DBA(第一问已证),∠ADF=∠BDA=90°,得
△DAF∽△DBA 则 AF/BA=AD/BD(相似三角形性质)
在Rt△ABD中,,AB=10,AF=2/15,∠ABF=∠ABD
则 tan∠ABF=AD/BD=AF/AB=1/75
记得采纳我的答案哦,祝你学习进步
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式