![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
利用函数的图形的凹凸性证明不等式(m^m+n^n)^2>4((m+n)/2)^(m+n)),其中m>0,n>0。
2个回答
展开全部
构造函数f(t)=t^t (t>0),易得
f"(t)=t^t·(lnt+1)²+t^(t-1)·(t+1)>0,
∴f(t)=t^t (t>0)是下凸函数.
故依Jensen不等式,可得
f(m)+f(n)≥2f[(m+n)/2]
→m^m+n^n≥2[(m+n)/2]^[(m+n)/2].
上式两边平方,即得
(m^m+n^n)^2≥4[(m+n)/2]^(m+n).
显然,m=n时,上式取等.
故原不等式得证。
f"(t)=t^t·(lnt+1)²+t^(t-1)·(t+1)>0,
∴f(t)=t^t (t>0)是下凸函数.
故依Jensen不等式,可得
f(m)+f(n)≥2f[(m+n)/2]
→m^m+n^n≥2[(m+n)/2]^[(m+n)/2].
上式两边平方,即得
(m^m+n^n)^2≥4[(m+n)/2]^(m+n).
显然,m=n时,上式取等.
故原不等式得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询