弧AC=弧CB,DE分别是半径OA,OB的中点,求证:CD=CE
1个回答
2013-10-29
展开全部
证明:
连接CA,CB,过C点作CF垂直于AB并交AB于F,交DE于G.
因为D、E分别是半径OA、OB的中点
所以DE平行于AB
又因为CF垂直于AB
所以CF垂直于DE
又因为OA=OB
所以CF为等腰三角形ODE底边DE平分线,
所以CF为DE的垂直平分线
所以CD=CE
连接CA,CB,过C点作CF垂直于AB并交AB于F,交DE于G.
因为D、E分别是半径OA、OB的中点
所以DE平行于AB
又因为CF垂直于AB
所以CF垂直于DE
又因为OA=OB
所以CF为等腰三角形ODE底边DE平分线,
所以CF为DE的垂直平分线
所以CD=CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询