因式分解的方法和技巧?
4个回答
2013-12-13
展开全部
因式分解的常用方法与技巧 田发银 因式分解是初中代数中一种重要的恒等变形,是处理数学家问题重要的手段和工具,有关的题目在中考和数学竞赛中比较常见。对于特殊的因式分解,除了考虑提公因式法、公式法、分组分解法、十字相乘法等基本方法外,还应根据多项式的具体结构特征,灵活选用一些特殊的方法,这样不仅可使问题化难为易,化繁为简,使复杂问题迎刃而解,而且有助于培养同学们的探索求新的习惯,提高同学们的数学思维能力。现将因式分解中几种比较常用的方法与技巧列举如下,供同学们参考。 一、巧拆项 在某些多项式的因式分解过程中,若将多项式的某一项(或几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。 例1
因式分解: 。 解析:根据多项式的特点,把3
拆成,则
。 例2
因式分解:。
解析:根据多项式的特点,把
拆成,把11x
拆成,则
=
。 二、巧添项 在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,则解法独特,新颖别致。 例3
因式分解: 。
解析:根据多项式的特点,在中添上两项,则有
。 三、巧换元 在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单、易于分解的多项式,使问题化繁为简,迅速获解。 例4
因式分解: 。
解析:
。
设
,则。于是:
原式
。 四、展开巧组合 若一个多项式的某些项是积的形式,直接分解比较困难,则可展开重新组合,然后再用基本方法分解。 例5
因式分解: 。 解析:将多项式展开后再重新组合,分组分解。
例6
因式分解:。
解析:
。 五、巧用主元 对于含有两个或两个以上字母的多项式,若无法直接分解,可以其中一个字母为主元进行变形整理,从而使问题柳暗花明。 例7
因式分解: 。 解析:这是一个轮换对称多项式(指以a代替b、b代替c、c代替a后原式不变),不妨以a为主元进行整理:
。 从以上几例可以看出,因式分解题型较多,解法灵活,有较强的技巧性,若能根据多项式的具体结构特征,选用恰当的方法与技巧,不仅可以化难为易,迅速求解,而且有助于培养同学们的创新思想,有效地激发同学们的学习兴趣。
谢谢请给我一个好评
因式分解: 。 解析:根据多项式的特点,把3
拆成,则
。 例2
因式分解:。
解析:根据多项式的特点,把
拆成,把11x
拆成,则
=
。 二、巧添项 在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,则解法独特,新颖别致。 例3
因式分解: 。
解析:根据多项式的特点,在中添上两项,则有
。 三、巧换元 在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单、易于分解的多项式,使问题化繁为简,迅速获解。 例4
因式分解: 。
解析:
。
设
,则。于是:
原式
。 四、展开巧组合 若一个多项式的某些项是积的形式,直接分解比较困难,则可展开重新组合,然后再用基本方法分解。 例5
因式分解: 。 解析:将多项式展开后再重新组合,分组分解。
例6
因式分解:。
解析:
。 五、巧用主元 对于含有两个或两个以上字母的多项式,若无法直接分解,可以其中一个字母为主元进行变形整理,从而使问题柳暗花明。 例7
因式分解: 。 解析:这是一个轮换对称多项式(指以a代替b、b代替c、c代替a后原式不变),不妨以a为主元进行整理:
。 从以上几例可以看出,因式分解题型较多,解法灵活,有较强的技巧性,若能根据多项式的具体结构特征,选用恰当的方法与技巧,不仅可以化难为易,迅速求解,而且有助于培养同学们的创新思想,有效地激发同学们的学习兴趣。
谢谢请给我一个好评
2013-12-13
展开全部
1.提取公因式
这个是最基本的.就是有公因式就提出来,这个大家都会,就不多说了
2.完全平方
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按上面的公式进行.
3.平方差公式
a^2-b^2=(a+b)(a-b)
这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.
4.十字相乘
x^2+(a+b)x+ab=(x+a)(x+b)
这个很实用,但用起来不容易.
在无法用以上的方法进行分解时,可以用下十字相乘法.
例子:x^2+5x+6
首先观察,有二次项,一次项和常数项,可以采用十字相乘法.
一次项系数为1.所以可以写成1*1
常数项为6.可以写成1*6,2*3,-1*-6,-2*-3(小数不提倡)
然后这样排列
1 - 2
1 - 3
(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)
然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)
我再写几个式子,楼主再自己琢磨下吧.
x^2-x-2=(x-2)(x+1)
2x^2+5x-12=(2x-3)(x+4)
其实最重要的是自己去运用,以上方法其实可以联合起来一起用,实践永远比别人教要好.
顺便告诉你.若一个式子的b^2-4ac小于0的话,这个式子是无论如何也不能分解了(在实数范围内,b为一次项系数,a为二次项系数,c为常数项)
这些方法一般在最高次为二次时适用!
这个是最基本的.就是有公因式就提出来,这个大家都会,就不多说了
2.完全平方
a^2+2ab+b^2=(a+b)^2
a^2-2ab+b^2=(a-b)^2
看到式字内有两个数平方就要注意下了,找找有没有两数积的两倍,有的话就按上面的公式进行.
3.平方差公式
a^2-b^2=(a+b)(a-b)
这个要熟记,因为在配完全平方时有可能会拆添项,如果前面是完全平方,后面又减一个数的话,就可以用平方差公式再进行分解.
4.十字相乘
x^2+(a+b)x+ab=(x+a)(x+b)
这个很实用,但用起来不容易.
在无法用以上的方法进行分解时,可以用下十字相乘法.
例子:x^2+5x+6
首先观察,有二次项,一次项和常数项,可以采用十字相乘法.
一次项系数为1.所以可以写成1*1
常数项为6.可以写成1*6,2*3,-1*-6,-2*-3(小数不提倡)
然后这样排列
1 - 2
1 - 3
(后面一列的位置可以调换,只要这两个数的乘积为常数项即可)
然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了)
我再写几个式子,楼主再自己琢磨下吧.
x^2-x-2=(x-2)(x+1)
2x^2+5x-12=(2x-3)(x+4)
其实最重要的是自己去运用,以上方法其实可以联合起来一起用,实践永远比别人教要好.
顺便告诉你.若一个式子的b^2-4ac小于0的话,这个式子是无论如何也不能分解了(在实数范围内,b为一次项系数,a为二次项系数,c为常数项)
这些方法一般在最高次为二次时适用!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-13
展开全部
⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
⑵运用公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)【a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)】
a^m+b^m=(a+b)【a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)】(m为奇数)
⑶分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
⑷拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
⑸十字相乘法
①x^2+(p q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax b)(cx d)
a \-----/b ac=k bd=n
c /-----\d ad+bc=m
※ 多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止.
(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
⑵运用公式法
①平方差公式:. a^2-b^2=(a+b)(a-b)
②完全平方公式: a^2±2ab+b^2=(a±b)^2
※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).
立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).
④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3
⑤a^n-b^n=(a-b)【a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)】
a^m+b^m=(a+b)【a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)】(m为奇数)
⑶分组分解法
分组分解法:把一个多项式分组后,再进行分解因式的方法.
分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
⑷拆项、补项法
拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.
⑸十字相乘法
①x^2+(p q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax b)(cx d)
a \-----/b ac=k bd=n
c /-----\d ad+bc=m
※ 多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止.
(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
正如数字分解质因数,
要变成所有的质数相乘的等式,
分解因式,就要彻底分解,
尽可能降低各个因式的最高次数,
具体方法,
第一步,提公因式,这也是最简单的方法,
公因式不仅有:系数、字母、单项式,这些我们都熟悉了,
而且,公因式还可能是一个式子,例如
(a + b)(3m + 2n) + (2m + 3n)(a + b),公因式是 (a+b)
= ( a + b )( 3m + 2n + 2m + 3n )
= ( a + b )( 5m + 5n ) 这样再提系数 5
= 5( a + b )( m + n )
第二步,公式法,
就是把整式乘法的公式倒过来用,
a" - b" = (a - b)(a + b) ——平方差,
a" + 2ab + b" = (a + b)" ——完全平方和,
a" - 2ab + b" = (a - b)" ——完全平方差,
a"' + b"' = (a + b)(a" - ab + b") ——立方和,
a"' - b"' = (a - b)(a" + ab + b") ——立方差,
熟悉公式,熟悉平方数、立方数是关键,
平方差,还有两个完全平方相减的式子,
例如 9( x + y )" - 4( x + y - 1 )"
= [ 3(x + y) - 2(x + y - 1) ][ 3(x + y) + 2(x + y - 1) ]
= ( 3x + 3y - 2x - 2y + 2 )( 3x + 3y + 2x + 2y - 2 )
= ( x + y + 2 )( 5x + 5y - 2 )
完全平方公式,
或许因为 a" - 2ab + b" = a" + 2a(-b) + (-b)"
公式就只有一个式子 (a + b)" = a" + 2ab + b"
关于完全平方差,应该注意
( a - b )" = [ - ( b - a ) ]" = ( b - a )"
= a" - 2ab + b" = b" - 2ab + a"
立方和、立方差,
分解因式变成五个项,两个一次项、三个二次项,
熟悉公式是难点,就拿具体数字算一算,
2"' - 1 = 8 - 1 = 1 X 7 = ( 2 - 1 )( 4 + 2 + 1 )
= ( 2 - 1 )( 2" + 2 + 1 )
我就是利用“棋盘上的麦粒”问题,熟悉了立方差
a"' - 1 = ( a - 1 )( a" + a + 1 )
a"' - b"' = ( a - b )( a" + ab + b )
立方差原来两个立方相减,
两个一次项也是相减,三个二次项就都是相加,
a"' + b"' = ( a + b )( a" - ab + b" )
立方和,就只有中间一个二次项 -ab 是减,其余都是相加
第三步,
二次三项式,十字相乘分解,
我的建议,使用分组分解法更好,
正如 x" + (a + b)x + ab = ( x + a )( x + b )
把单项式 mx = (a+b)x ,拆开变成 ax + bx ,
就能够分组提公因式进行分解
Q 关键是怎样把一次项一分为二,就由常数项的正负来决定,
一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式
x" + 10x + 24
= x" + 4x + 6x + 24
= x( x + 4 ) + 6( x + 4 )
= ( x + 4 )( x + 6 )
还有
x" - 10x + 24
= x" - 4x - 6x + 24
= x( x - 4 ) - 6( x - 4 )
= ( x - 4 )( x - 6 )
Q 如果常数项是正数,
一次项就是拆开两个绝对值比原来小的两个项;
或者,完全平方式也可以这样分解
再看
x" - 10x - 24
= x" - 12x + 2x - 24
= x( x - 12 ) + 2( x - 12 )
= ( x - 12 )( x + 2 )
还有
x" + 10x - 24
= x" + 12x - 2x - 24
= x( x + 12 ) - 2( x + 12 )
= ( x + 12 )( x - 2 )
Q 如果常数项是负数,
一次项系数就是分开两个项的相差数;
这样的二次三项式,
一次项与常数项,绝对值不变,
两项正负二二得四,就都有 4 种情况,
x" ± 5x ± 6
x" ± 10x ± 24
x" ± 15x ± 54
x" ± 20x ± 96
x" ± 25x ± 150
要么你也多做几个,这个方法也就是技巧
最后,就要检验,
确保分解彻底,因式分解变形正确,
例如 x^6 - y^6,应该
= ( x"' - y'" )( x"' + y"' )
= ( x - y )( x + y )( x" - xy + y" )( x" + xy + y" )
相当于 64 - 1,
= ( 8 - 1 )( 8 + 1 )
= ( 2 - 1 )( 4 + 2 + 1 )( 2 + 1 )( 4 - 2 + 1 )
= 1 X 7 X 3 X 3
如果先用立方差,做成
= ( x" - y" )( x^4 + x"y" + y^4 )
= ( x - y )( x + y )( x^4 + x"y" + y^4 )
相当于
= ( 4 - 1 )( 4" + 4 + 1 )
= ( 2 - 1 )( 2 + 1 )( 16 + 4 + 1 )
= 1 X 3 X 21
还有 21 分解不彻底,也就不正确了
正如现在的平方差,有两个完全平方相减,
现在要求分解的式子都比较复杂,要想还原就不方便了,
各种类型的式子,我们就都要熟悉两三种解答方式,
这样才能够相互检验,确保解答正确。
要变成所有的质数相乘的等式,
分解因式,就要彻底分解,
尽可能降低各个因式的最高次数,
具体方法,
第一步,提公因式,这也是最简单的方法,
公因式不仅有:系数、字母、单项式,这些我们都熟悉了,
而且,公因式还可能是一个式子,例如
(a + b)(3m + 2n) + (2m + 3n)(a + b),公因式是 (a+b)
= ( a + b )( 3m + 2n + 2m + 3n )
= ( a + b )( 5m + 5n ) 这样再提系数 5
= 5( a + b )( m + n )
第二步,公式法,
就是把整式乘法的公式倒过来用,
a" - b" = (a - b)(a + b) ——平方差,
a" + 2ab + b" = (a + b)" ——完全平方和,
a" - 2ab + b" = (a - b)" ——完全平方差,
a"' + b"' = (a + b)(a" - ab + b") ——立方和,
a"' - b"' = (a - b)(a" + ab + b") ——立方差,
熟悉公式,熟悉平方数、立方数是关键,
平方差,还有两个完全平方相减的式子,
例如 9( x + y )" - 4( x + y - 1 )"
= [ 3(x + y) - 2(x + y - 1) ][ 3(x + y) + 2(x + y - 1) ]
= ( 3x + 3y - 2x - 2y + 2 )( 3x + 3y + 2x + 2y - 2 )
= ( x + y + 2 )( 5x + 5y - 2 )
完全平方公式,
或许因为 a" - 2ab + b" = a" + 2a(-b) + (-b)"
公式就只有一个式子 (a + b)" = a" + 2ab + b"
关于完全平方差,应该注意
( a - b )" = [ - ( b - a ) ]" = ( b - a )"
= a" - 2ab + b" = b" - 2ab + a"
立方和、立方差,
分解因式变成五个项,两个一次项、三个二次项,
熟悉公式是难点,就拿具体数字算一算,
2"' - 1 = 8 - 1 = 1 X 7 = ( 2 - 1 )( 4 + 2 + 1 )
= ( 2 - 1 )( 2" + 2 + 1 )
我就是利用“棋盘上的麦粒”问题,熟悉了立方差
a"' - 1 = ( a - 1 )( a" + a + 1 )
a"' - b"' = ( a - b )( a" + ab + b )
立方差原来两个立方相减,
两个一次项也是相减,三个二次项就都是相加,
a"' + b"' = ( a + b )( a" - ab + b" )
立方和,就只有中间一个二次项 -ab 是减,其余都是相加
第三步,
二次三项式,十字相乘分解,
我的建议,使用分组分解法更好,
正如 x" + (a + b)x + ab = ( x + a )( x + b )
把单项式 mx = (a+b)x ,拆开变成 ax + bx ,
就能够分组提公因式进行分解
Q 关键是怎样把一次项一分为二,就由常数项的正负来决定,
一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式
x" + 10x + 24
= x" + 4x + 6x + 24
= x( x + 4 ) + 6( x + 4 )
= ( x + 4 )( x + 6 )
还有
x" - 10x + 24
= x" - 4x - 6x + 24
= x( x - 4 ) - 6( x - 4 )
= ( x - 4 )( x - 6 )
Q 如果常数项是正数,
一次项就是拆开两个绝对值比原来小的两个项;
或者,完全平方式也可以这样分解
再看
x" - 10x - 24
= x" - 12x + 2x - 24
= x( x - 12 ) + 2( x - 12 )
= ( x - 12 )( x + 2 )
还有
x" + 10x - 24
= x" + 12x - 2x - 24
= x( x + 12 ) - 2( x + 12 )
= ( x + 12 )( x - 2 )
Q 如果常数项是负数,
一次项系数就是分开两个项的相差数;
这样的二次三项式,
一次项与常数项,绝对值不变,
两项正负二二得四,就都有 4 种情况,
x" ± 5x ± 6
x" ± 10x ± 24
x" ± 15x ± 54
x" ± 20x ± 96
x" ± 25x ± 150
要么你也多做几个,这个方法也就是技巧
最后,就要检验,
确保分解彻底,因式分解变形正确,
例如 x^6 - y^6,应该
= ( x"' - y'" )( x"' + y"' )
= ( x - y )( x + y )( x" - xy + y" )( x" + xy + y" )
相当于 64 - 1,
= ( 8 - 1 )( 8 + 1 )
= ( 2 - 1 )( 4 + 2 + 1 )( 2 + 1 )( 4 - 2 + 1 )
= 1 X 7 X 3 X 3
如果先用立方差,做成
= ( x" - y" )( x^4 + x"y" + y^4 )
= ( x - y )( x + y )( x^4 + x"y" + y^4 )
相当于
= ( 4 - 1 )( 4" + 4 + 1 )
= ( 2 - 1 )( 2 + 1 )( 16 + 4 + 1 )
= 1 X 3 X 21
还有 21 分解不彻底,也就不正确了
正如现在的平方差,有两个完全平方相减,
现在要求分解的式子都比较复杂,要想还原就不方便了,
各种类型的式子,我们就都要熟悉两三种解答方式,
这样才能够相互检验,确保解答正确。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询