![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
关于导数的应用题
一灯泡挂在桌面的上空,读者在桌面上的视点距灯泡所在铅垂线的距离为a,视点处受到的照度y与光线和视点处铅垂线的夹角afa的余弦成正比,与视点到灯泡的距离平方成反比。问灯泡悬...
一灯泡挂在桌面的上空,读者在桌面上的视点距灯泡所在铅垂线的距离为a,视点处受到的照度y与光线和视点处铅垂线的夹角afa的余弦成正比,与视点到灯泡的距离平方成反比。问灯泡悬挂的高度h为何值时,视点处的照度最大?
答案是 (根号2/2)a
我不知道式子怎么列。
谢谢
最后系数怎么消掉?
麻烦吧过程都给写下来 展开
答案是 (根号2/2)a
我不知道式子怎么列。
谢谢
最后系数怎么消掉?
麻烦吧过程都给写下来 展开
2个回答
展开全部
y(a,h)∝1/(h^2+a^2)
y(a,h)∝cosa
所以y(a,h)∝cosa/(h^2+a^2)
当cosa/(h^2+a^2)取最大值时,y(a,h)取得最大值
Y=cosa/(h^2+a^2)
=(cosa)(h^2+a^2)^(-1)————cosa=h/√(h^2+a^2)=h(h^2+a^2)^(-1/2)
=h(h^2+a^2)^(-3/2)
上式中a为常数,Y是h的函数,求当h=?时,Y取最大值
y(a,h)∝cosa
所以y(a,h)∝cosa/(h^2+a^2)
当cosa/(h^2+a^2)取最大值时,y(a,h)取得最大值
Y=cosa/(h^2+a^2)
=(cosa)(h^2+a^2)^(-1)————cosa=h/√(h^2+a^2)=h(h^2+a^2)^(-1/2)
=h(h^2+a^2)^(-3/2)
上式中a为常数,Y是h的函数,求当h=?时,Y取最大值
![](https://ecmc.bdimg.com/public03/b4cb859ca634443212c22993b0c87088.png)
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询