
若tanθ=1/3,则cos²θ+1/2sin2θ的值
展开全部
答:
tanθ=1/3
cos²θ+(1/2)sin2θ
=(cos²θ+sinθcosθ) / (sin²θ+cos²θ) 分子分母同除以cos²θ
=(1+tanθ) / (tan²θ+1)
=(1+1/3) /(1/9+1)
=(4/3) /(10/9)
=6/5
tanθ=1/3
cos²θ+(1/2)sin2θ
=(cos²θ+sinθcosθ) / (sin²θ+cos²θ) 分子分母同除以cos²θ
=(1+tanθ) / (tan²θ+1)
=(1+1/3) /(1/9+1)
=(4/3) /(10/9)
=6/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询