已知向量m=(cosx,-1),n=(√3sinx,-1/2),设函数f(x)=(m+n)m
展开全部
已知向量m={cosx,-1},向量n={(√3)sinx,-1/2},函数f{x}={m+n}*m,求函数最小正周期
解:m+n=(cosx+(√3)sinx,-3/2)
f(x)=(m+n)•m=[cosx+(√3)sinx]cosx+3/4=cos²x+(√3)sinxcosx+3/4
=(1+cos2x)/2+(√3/2)sin2x+3/4=(1/2)cos2x+(√3/2)sin2x+1
=cos2xcos(π/3)+sin2xsin(π/3)+1=cos(2x-π/3)+1
故最小正周期T=2π/2=π
解:m+n=(cosx+(√3)sinx,-3/2)
f(x)=(m+n)•m=[cosx+(√3)sinx]cosx+3/4=cos²x+(√3)sinxcosx+3/4
=(1+cos2x)/2+(√3/2)sin2x+3/4=(1/2)cos2x+(√3/2)sin2x+1
=cos2xcos(π/3)+sin2xsin(π/3)+1=cos(2x-π/3)+1
故最小正周期T=2π/2=π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询