已知:如图,在三角形ABC中,∠ABC,∠ACB的平分线相交于点I。求证:∠BIC=90°+½∠A

小凯的小郭
高粉答主

2014-05-20 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:3.4万
采纳率:85%
帮助的人:1.7亿
展开全部
应用三角形外角定理:
延长BI交AC于D,
∠BIC是ΔCDI的外角,∴∠BIC=∠IDC+∠ICD(三角形外角定理),
∠IDC是ΔABD的外角,∴∠IDC=∠A+∠ABD(三角形外角定理),
∵BI、CI是∠ABC、∠ACB的平分线,
∴∠ABD=1/2∠ABC,∠ICD=1/2∠ACB(角平分线定义),
∴∠BIC=1/2(∠ABC+∠ACB)+∠A
=1/2(180°-∠A)+∠A(三角形内角和为180°)
=90°+1/2∠A。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式