展开全部
由题意,[e^(2x)]cosx 的原函数是:
(1/5)[e^(2x)]sinx+(2/5)[e^2x]cosx+C ,其中C是任意常数;
设 F(x)=(1/5)[e^(2x)]sinx+(2/5)[e^2x]cosx ,那么
∫(0→π/2)[e^(2x)]cosxdx
=F(π/2)-F(0)
=(1/5)[e^(2(π/2))]sin(π/2)+(2/5)[e^2(π/2)]cos(π/2)-(1/5)[e^0]sin0-(2/5)[e^0]cos0
=(1/5)(e^π)+0-0-2/5
=(1/5)((e^π)-2)
希望对你有用~
(1/5)[e^(2x)]sinx+(2/5)[e^2x]cosx+C ,其中C是任意常数;
设 F(x)=(1/5)[e^(2x)]sinx+(2/5)[e^2x]cosx ,那么
∫(0→π/2)[e^(2x)]cosxdx
=F(π/2)-F(0)
=(1/5)[e^(2(π/2))]sin(π/2)+(2/5)[e^2(π/2)]cos(π/2)-(1/5)[e^0]sin0-(2/5)[e^0]cos0
=(1/5)(e^π)+0-0-2/5
=(1/5)((e^π)-2)
希望对你有用~
更多追问追答
追问
请问你是怎么算出,[e^(2x)]cosx 的原函数是:(1/5)[e^(2x)]sinx+(2/5)[e^2x]cosx+C ,其中C是任意常数????
我就是这个过程不太明白喔,能详细写一下吗?
追答
利用 cosx 和 sinx 积分的对称性,然后建立方程组解出的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询