spss回归分析结果解读
2021-04-01 · 百度认证:SPSSAU官方账号,优质教育领域创作者
非标准化系数(B):非标准化回归系数。回归模型方程中使用的是非标准化系数。
标准化系数(Beta):标准化回归系数。一般可用于比较自变量对Y的影响程度。Beta值越大说明该变量对Y的影响越大
t值:t检验的过程值,回归分析中涉及两种检验(t检验和F检验),t检验分别检验每一个X对Y的影响关系,通过t检验说明这个X对Y有显著的影响关系;F检验用于检验模型整体的影响关系,通过F检验,则说明模型中至少有一个X对Y有显著的影响关系。此处的t值,为t检验的过程值,用于计算P值。一般无需关注。
VIF值:共线性指标。大于5说明存在共线性问题。
R²:决定系数,模型拟合指标。反应Y的波动有多少比例能被X的波动描述。
调整R²:调整后的决定系数,也是模型拟合指标。当x个数较多是调整R²比R²更为准确。
F检验:通过F检验,说明模型中至少有一个X对Y有显著的影响关系。分析时主要关注后面的P值即可。
D-W值:D-W检验值,Durbin-Watson检验,是自相关性的一项检验方法。如果D-W值在2附近(1.7~2.3之间),则说明没有自相关性,模型构建良好。
第一步:首先对模型整体情况进行分析
包括模型拟合情况(R²),是否通过F检验等。
第二步:分析X的显著性
分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。
第三步:判断X对Y的影响关系方向及影响程度
结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。
第四步:写出模型公式
第五步:对分析进行总结
SPSSAU也会提供智能分析建议,方便分析人员快速得出分析结果。