如图,正方体ABCD-A1B1C1D1中,P,M,N,分别为棱DD1,AB,BC的中点,求证PB⊥平面MNB1
2个回答
展开全部
连接PB,MN,B1N,B1M
设MN中点O,连接B1O,B1O和BP共面于BB1D1D,其交点Q
设正方体边长2a,求角度即可证明
RtΔBOQ和RtΔOBB1中,如果∠OBQ=∠BB1O
因为∠BB1O和∠BOB1互余,亦即∠OBQ和∠BOQ互余
BQ⊥OQ,即BP⊥OB1,
由于三角形B1MN和PMN都是等腰三角形
∴ MN⊥B1O,MN⊥PO,
∴ MN⊥平面BB1D1D,即MN⊥BP
所以,BP⊥平面B1MN
DP=a,BD=2√2a,BP=3a,sin∠DBP=1/3
MN=√2A,BO=√2A/2,B1O=3√2A/2,sin∠BB1O=1/3
∴ ∠BB1O=∠DBP
即,∠OBQ=∠BB1O
由上分析知,BP⊥平面B1MN
设MN中点O,连接B1O,B1O和BP共面于BB1D1D,其交点Q
设正方体边长2a,求角度即可证明
RtΔBOQ和RtΔOBB1中,如果∠OBQ=∠BB1O
因为∠BB1O和∠BOB1互余,亦即∠OBQ和∠BOQ互余
BQ⊥OQ,即BP⊥OB1,
由于三角形B1MN和PMN都是等腰三角形
∴ MN⊥B1O,MN⊥PO,
∴ MN⊥平面BB1D1D,即MN⊥BP
所以,BP⊥平面B1MN
DP=a,BD=2√2a,BP=3a,sin∠DBP=1/3
MN=√2A,BO=√2A/2,B1O=3√2A/2,sin∠BB1O=1/3
∴ ∠BB1O=∠DBP
即,∠OBQ=∠BB1O
由上分析知,BP⊥平面B1MN
参考资料: http://zhidao.baidu.com/question/143624419.html?si=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询