在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF

在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A... 在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A 1 EF的位置,使二面角A 1 -EF-B成直二面角,连接A 1 B、A 1 P(如图2) (Ⅰ)求证:A 1 E⊥平面BEP;(Ⅱ)求直线A 1 E与平面A 1 BP所成角的大小;(Ⅲ)求二面角B-A 1 P-F的大小(用反三角函数表示). 展开
 我来答
只死你riI
推荐于2016-05-06 · TA获得超过140个赞
知道答主
回答量:193
采纳率:0%
帮助的人:138万
展开全部


解法一:不妨设正三角形ABC的边长为3
(1)在图1中,取BE中点D,连接DF.AE:EB=CF:FA=1:2
∴AF=AD=2而∠A=60°,
∴△ADF是正三角形,又AE=DE=1,
∴EF⊥AD在图2中,A 1 E⊥EF,BE⊥EF,
∴∠A 1 EB为二面角A 1- EF-B的平面角.由
题设条件知此二面角为直二面角,A 1 E⊥BE,又BE∩EF=E(2)
∴A 1 E⊥平面BEF,
即A 1 E⊥平面BEP



(3)在图2中,A 1 E不垂直A 1 B,
∴A 1 E是平面A 1 BP的垂线,又A 1 E⊥平面BEP,
∴A 1 E⊥BE.
从而BP垂直于A 1 E在平面A 1 BP内的射影(三垂线定理的逆定理)设A 1 E在平面A 1 BP内的射影为A 1 Q,且A 1 Q交BP于点Q,则∠E 1 AQ就是A 1 E与平面A 1 BP所成的角,且BP⊥A 1 Q.
在△EBP中,BE=EP=2而∠EBP=60°,
∴△EBP是等边三角形.又A 1 E⊥平面BEP,
∴A 1 B=A 1 P,
∴Q为BP的中点,且 EQ=
3
,又A 1 E=1,
在Rt△A 1 EQ中, tan∠E A 1 Q=
EQ
A 1 E
=
3

∴∠EA 1 Q=60°,
∴直线A 1 E与平面A 1 BP所成的角为60°



在图3中,过F作FM⊥A 1 P与M,连接QM,QF,
∵CP=CF=1,∠C=60°,
∴△FCP是正三角形,
∴PF=1.有 PQ=
1
2
BP=1

∴PF=PQ①,
∵A 1 E⊥平面BEP, EQ=EF=
3

∴A 1 E=A 1 Q,
∴△A 1 FP≌△A 1 QP从而∠A 1 PF=∠A 1 PQ②,
由①②及MP为公共边知△FMP≌△QMP,
∴∠QMP=∠FMP=90°,且MF=MQ,
从而∠FMQ为二面角B-A 1 P-F的平面角.
在Rt△A 1 QP中,A 1 Q=A 1 F=2,PQ=1,又∴ A 1 P=
5

∵MQ⊥A 1 P,∴ MQ=
A 1 Q?PQ
A 1 P
=
2
5
5

MF=
2
5
5

在△FCQ中,FC=1,QC=2,∠C=60°,由余弦定理得 QF=
3

在△FMQ中, cos∠FMQ=
M F 2 +M Q 2 -Q F 2
2MF?MQ
=-
7
8

∴二面角B-A 1 P-F的大小为 π-arccos
7
8
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式