填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于

填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.(1)如图①,若∠BAC=60°,则∠... 填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______;(2)如图③,若∠BAC=α,则∠AFB=90°?12α90°?12α(用含α的式子表示);(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°?12α;在图⑤中,∠AFB与∠α的数量关系是∠AFB=90°+12α∠AFB=90°+12α.请你任选其中一个结论证明. 展开
 我来答
司翰2199
2014-12-25 · TA获得超过127个赞
知道答主
回答量:190
采纳率:71%
帮助的人:61.9万
展开全部
(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,
∴△ABC∽△EDC,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD
=180°-∠BAC-∠ABC
=∠ACB,
∴∠AFB=60°,
同理可得:∠AFB=45°;

(2)∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
BC
DC
AC
EC

∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD,
=180°-∠BAC-∠ABC=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=90°-
1
2
α

∴∠AFB=90°-
1
2
α

故答案为:∠AFB=90°?
1
2
α


(3)图4中:∠AFB=90°?
1
2
α

图5中:∠AFB=90°+
1
2
α

∠AFB=90°?
1
2
α
的证明如下:
∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
BC
DC
AC
EC

∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD,
=180°-∠BAC-∠ABC=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=90°-
1
2
α

∴∠AFB=90°-
1
2
α


∠AFB=90°+
1
2
α
的证明如下:
∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
BC
DC
AC
EC

∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠BDC=∠AEC,
∴∠AFB=∠BDC+∠CDE+∠DEF,
=∠CDE+∠CED=180°-∠DCE,
∵AB=AC,EC=ED,∠BAC=∠DEC=α,
∴∠DCE=90°-
1
2
α

∴∠AFB=180°-(90°-
1
2
α
)=90°+
1
2
α
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式