请问这题怎么做?

 我来答
斛谷秋0jmf10
2014-12-19 · TA获得超过228个赞
知道答主
回答量:27
采纳率:100%
帮助的人:15.8万
展开全部
求曲线X²+(y-5)²=16所围图形绕X轴旋转所得旋转体的体积。

解:X²+(y-5)²=16是一个园心在(0,5),半径为4的园;绕x轴旋转一周即得一园环(手躅).
y=5±√(16-x²),取旋转体的外径R=5+√(16-x²),内径r=5-√(16-x²);于是得园环的体积:
V=【-4,4】π∫(R²-r²)dx=【-4,4】π∫{[5+√(16-x²)]²-[5-√(16-x²)]²}=【-4,4】20π∫√(16-x²)dx
=[(x/2)√(4²-x²)+(16/2)arcsin(x/4)]【-4,4】=20π[8arcsin1-8arcsin(-1)]=20π[4π+4π]=160π²
@$
2014-12-19 · 贡献了超过102个回答
知道答主
回答量:102
采纳率:0%
帮助的人:25.3万
展开全部
分着解 最后在合并
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式