如何用平衡热力学原理研究相似相溶

 我来答
jingmin329
2015-10-09 · TA获得超过5.5万个赞
知道大有可为答主
回答量:9142
采纳率:0%
帮助的人:3367万
展开全部
  1、用平衡热力学原理研究相似相溶,说白了就是非平衡态热力学。
    非平衡态热力学,研究的是不可逆过程,它们随时间的推移而改变状态,其方向总是从非平衡态趋向平衡态,扩散、热传导和动量传递,是典型的不可逆过程,总称为传递现象。传递现象可概括为物质传递、热量传递和动量传递。前两者又称为扩散和热传导。从机理来说,可区分为分子传递与旋涡传递,旋涡传递属于流体力学,不可逆过程热力学研究的是分子传递现象。
  (1)扩散:由于化学势差别而产生的物质由化学势较高的区域向化学势较低的区域的迁移。具体来说是由浓差、温差以及电位差所引起,其中以浓差较为常见。扩散一直进行到相内各部分浓度达到均匀,或两相间达到相平衡为止。
(2)热传导:由于温差而产生的热量由温度较高的区域向温度较低的区域的传递。当各部分温度均匀,达到热平衡,热传导终止。
(3)动量传递:由于流速差而产生的动量由高流速区域向低流速区域的传递。当各部分流速完全相同,动量传递终止。
2、具体分析:
  传递现象的微观原因是分子、离子、原子等微观粒子的热运动。由于热运动的随机性,由浓度高的区域向浓度低的区域运动的粒子多,由浓度低的区域向浓度高的区域运动的粒子少,其净结果在宏观上即表现为扩散。由温度高的区域向温度低的区域运动的粒子所携带的动能高,由温度低的区域向温度高的区域所携带的动能低,其净结果在宏观上即表现为热传导。由流速高的区域向流速低的区域运动的粒子所携带的动量大,由流速低的区域向流速高的区域运动的粒子所携带的动量小,其净结果在宏观上即表现为动量传递。
由于扩散、热传导和动量传递有着相同的微观本质,因而它们具有类似的宏观规律,可以在统一的理论框架中进行研究。这种统一的框架不仅表现在:它们都可以用形式相同的通量(物质通量、热通量、动量通量)与推动力(化学势梯度、温度梯度、流速梯度)间的正比关系来描述,具体表现为费克定律、傅里叶定律和牛顿定律;而且它们可以统一组织在非平衡态热力学的理论框架之中。
与平衡态热力学的功能类似,非平衡态热力学揭示了不同传递特性间一些有价值的普遍联系。
启帆信息
2024-11-19 广告
启帆信息是英伟达中国区代理商,原厂授权代理,提供全面的软件技术解决方案以及NVIDIA以太网产品、交换机等产品,欢迎前来咨询!... 点击进入详情页
本回答由启帆信息提供
励春冬p4
2015-03-10 · TA获得超过9130个赞
知道小有建树答主
回答量:1897
采纳率:0%
帮助的人:548万
展开全部
就是非平衡态热力学,研究的是不可逆过程,它们随时间的推移而改变状态,其方向总是从非平衡态趋向平衡态,扩散、热传导和动量传递,是典型的不可逆过程,总称为传递现象。传递现象可概括为物质传递、热量传递和动量传递。前两者又称为扩散和热传导。从机理来说,可区分为分子传递与旋涡传递,旋涡传递属于流体力学,不可逆过程热力学研究的是分子传递现象。
扩散 由于化学势差别而产生的物质由化学势较高的区域向化学势较低的区域的迁移。具体来说是由浓差、温差以及电位差所引起,其中以浓差较为常见。扩散一直进行到相内各部分浓度达到均匀,或两相间达到相平衡为止。
热传导 由于温差而产生的热量由温度较高的区域向温度较低的区域的传递。当各部分温度均匀,达到热平衡,热传导终止。
动量传递 由于流速差而产生的动量由高流速区域向低流速区域的传递。当各部分流速完全相同,动量传递终止。
传递现象的微观原因是分子、离子、原子等微观粒子的热运动。由于热运动的随机性,由浓度高的区域向浓度低的区域运动的粒子多,由浓度低的区域向浓度高的区域运动的粒子少,其净结果在宏观上即表现为扩散。由温度高的区域向温度低的区域运动的粒子所携带的动能高,由温度低的区域向温度高的区域所携带的动能低,其净结果在宏观上即表现为热传导。由流速高的区域向流速低的区域运动的粒子所携带的动量大,由流速低的区域向流速高的区域运动的粒子所携带的动量小,其净结果在宏观上即表现为动量传递。
由于扩散、热传导和动量传递有着相同的微观本质,因而它们具有类似的宏观规律,可以在统一的理论框架中进行研究。这种统一的框架不仅表现在:它们都可以用形式相同的通量(物质通量、热通量、动量通量)与推动力(化学势梯度、温度梯度、流速梯度)间的正比关系来描述,具体表现为费克定律、傅里叶定律和牛顿定律;而且它们可以统一组织在非平衡态热力学的理论框架之中。与平衡态热力学的功能类似,非平衡态热力学揭示了不同传递特性间一些有价值的普遍联系。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式