求一道数学题!!高手进!!!
如图,三角形ABC为等边三角形,CE为外角平分线,点D在AC上,连BD,并延长CD交与点E。(1)求证,三角形ABC相似三角形CED(2)若AB=6AD=2CD,求BE的...
如图,三角形ABC为等边三角形,CE为外角平分线,点D在AC上,连BD,并延长CD交与点E。
(1)求证,三角形ABC相似三角形CED
(2)若AB=6 AD=2CD,求BE的长
请写出详细过程,现在比较穷,没钱了,请各位多多包涵。
baihana 展开
(1)求证,三角形ABC相似三角形CED
(2)若AB=6 AD=2CD,求BE的长
请写出详细过程,现在比较穷,没钱了,请各位多多包涵。
baihana 展开
2个回答
展开全部
(1)求证: △ABD∽△CED
∵△ABC为等边三角形,CE为外角平分线
∴∠BAC=∠ACB=∠ABC=∠ACE=60°
∵∠CDE=ADB(对角相等)
∴∠ABD=∠CED
∴△ABD∽△CED
∵∠ABD=∠CED<∠ABC=60°
∴三角形ABC不可能相似三角形CED
(2)因AB=6 AD=2CD,
∵△ABD∽△CED,CD为△BCE角平分线
∴BD/DE=BC/CE(1)
∵△ABC是等边△
∴AD+CD=AC=BC=AB=6
则2CD+CD=6
∴CD=2,AD=4
即(1)为BD×CE=6DE (2)
∵COS60°=1/2
根据余弦定理
BD²=AB²+AD²-2AB×AD×COS60°=6²+4²-2×6×4/2=28=4×7
∴BD=√4×7=2√7
即(2)为2√7×CE=6DE
∴ √7×CE=3DE
∵△ABC为等边三角形,CE为外角平分线
∴∠BAC=∠ACB=∠ABC=∠ACE=60°
∵∠CDE=ADB(对角相等)
∴∠ABD=∠CED
∴△ABD∽△CED
∵∠ABD=∠CED<∠ABC=60°
∴三角形ABC不可能相似三角形CED
(2)因AB=6 AD=2CD,
∵△ABD∽△CED,CD为△BCE角平分线
∴BD/DE=BC/CE(1)
∵△ABC是等边△
∴AD+CD=AC=BC=AB=6
则2CD+CD=6
∴CD=2,AD=4
即(1)为BD×CE=6DE (2)
∵COS60°=1/2
根据余弦定理
BD²=AB²+AD²-2AB×AD×COS60°=6²+4²-2×6×4/2=28=4×7
∴BD=√4×7=2√7
即(2)为2√7×CE=6DE
∴ √7×CE=3DE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询