考试求答案
2014-11-19
展开全部
当m=-2时,f(x)=x(ln x-2)=xln x-2x,
定义域为(0,+∞),且f′(x)=ln x-1.
由f′(x)>0,得ln x-1>0,所以x>e.由f′(x)<0,得ln x-1<0,所以0<x<e.
故f(x)的单调递增区间是(e,+∞),递减区间是(0,e).
(2)当m=时,不等式g(x)≥f(x),即x3+x≥x恒成立.
由于x>0,所以x2+1≥ln x+,亦即x2≥ln x+,所以a≥ .
令h(x)= ,则h′(x)=,由h′(x)=0得x=1.
且当0<x<1时,h′(x)>0;当x>1时,h′(x)<0,
即h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
所以h(x)在x=1处取得极大值h(1)=,也就是函数h(x)在定义域上的最大值.因此要使≥恒成立,需有≥,的取值范围为
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询