如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点

如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点.(1)求证:EF⊥PD;(2)求... 如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点.(1)求证:EF⊥PD;(2)求直线PF与平面PBD所成的角的大小;(3)求二面角E-PF-B的大小. 展开
 我来答
疯子捌韧7
推荐于2016-03-17 · 超过70用户采纳过TA的回答
知道答主
回答量:123
采纳率:100%
帮助的人:71.1万
展开全部
(1)证明:连接BD
在△ABC中,∠ABC=90°
∵AB=BC,点D为AC的中点,∴BD⊥AC
∵PB⊥平面ABC,∴BD为PD在平面ABC内的射影
∴PD⊥AC
∵E、F分别为AB、BC的中点,∴EF AC
∴EF⊥PD;
(2)∵PB⊥平面ABC,∴PB⊥EF.
连接BD交EF于点O,∵EF⊥PB,EF⊥PD,∴EF⊥平面PBD,
∴∠FPO为直线PF与平面PBD所成的角,EF⊥PO.
∵PB⊥面ABC,∴PB⊥AB,PB⊥BC,又∵∠PAB=45°,
∴PB=AB=2.
在Rt△FPO中,OF=
1
4
AC
=
2
2
,PF=
P B 2 +B F 2
=
5

∴sin∠FPO=
OF
PF
=
10
10

∴直线PF与平面PBD所成的角为arcsin
10
10

(3)过点B作BM⊥PF于点F,连接EM,
∵AB⊥PB,AB⊥BC,
∴AB⊥平面PBC,即BM为EM在平面PBC内的射影,
∴EM⊥PF,
∴∠EMB为二面角E-PF-B的平面角.
∵Rt△PBF中,BM=
PB?BF
PF
=
2
5

∴tan∠EMB=
EB
BM
=
5
2

∴二面角E-PF-B的大小为arctan
5
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式