已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0(1)判断函数的奇偶性;(2... 已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0(1)判断函数的奇偶性;(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围. 展开
 我来答
淡烟lAI07S
推荐于2016-09-30 · TA获得超过110个赞
知道答主
回答量:171
采纳率:0%
帮助的人:162万
展开全部
(1)令x=y=0,则f(0+0)=f(0)+f(0)∴f(0)=0
令y=-x,则f(x-x)=f(0)=f(x)+f(-x),∴f(-x)=-f(x)
∴f(x)是奇函数.(4分)
(2)函数f(x)在[-1,1]上是增函数.(6分)
设x 1 ,x 2 ∈[-1,1]且x 1 <x则x 2 -x 1 >0
∴f(x 1 )-f(x 2 )=-f(x 2 -x 1
又∵x>0,f(x)>0∴f(x 2 -x 1 )>0
∴f(x 1 )-f(x 2 )=-f(x 2 -x 1 )<0即f(x 1 )<f(x 2
故由函数单调性定义可知,函数f(x)在[-1,1]上是增函数.(10分)
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立.
则必须(1-2a)m+2>1,?a∈[-1,1]恒成立;
即-2ma+m+1>0,?a∈[-1,1]恒成立
令g(a)=-2ma+m+1必须
g(-1)>0
g(1)>0
-2m(-1)+m+1>0
-2m+m+1>0

解得-
1
3
<m<1
故实数m的取值范围为-
1
3
<m<1.(14分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式