
已知函数f(x)=px?px?2lnx.(1)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)
已知函数f(x)=px?px?2lnx.(1)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)在其定义域内为增函数,求正实数p的取值范围....
已知函数f(x)=px?px?2lnx.(1)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)在其定义域内为增函数,求正实数p的取值范围.
展开
1个回答
展开全部
(1)当p=2时,函数f(x)=2x?
?2lnx,
f(1)=2-2-2ln1=0.f′(x)=2+
?
,
曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2-2=2.
从而曲线f(x)在点(1,f(1))处的切线方程为y-0=2(x-1),即y=2x-2.
(2)f′(x)=p+
?
=
.
令h(x)=px2-2x+p,要使f(x)在定义域(0,+∞)内是增函数,
只需h(x)≥0在(0,+∞)内恒成立.
由题意p>0,h(x)=px2-2x+p的图象为开口向上的抛物线,对称轴方程为x=
∈(0,+∞),
∴h(x)min=p?
,只需p?
≥0,
即p≥1时,h(x)≥0,f'(x)≥0
∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞).
2 |
x |
f(1)=2-2-2ln1=0.f′(x)=2+
2 |
x2 |
2 |
x |
曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2-2=2.
从而曲线f(x)在点(1,f(1))处的切线方程为y-0=2(x-1),即y=2x-2.
(2)f′(x)=p+
p |
x2 |
2 |
x |
px2?2x+p |
x2 |
令h(x)=px2-2x+p,要使f(x)在定义域(0,+∞)内是增函数,
只需h(x)≥0在(0,+∞)内恒成立.
由题意p>0,h(x)=px2-2x+p的图象为开口向上的抛物线,对称轴方程为x=
1 |
p |
∴h(x)min=p?
1 |
p |
1 |
p |
即p≥1时,h(x)≥0,f'(x)≥0
∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询