设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是

设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是(A)极限limΔx→0f(x0+Δx)-f(x0-Δx)/Δx存在(B)极限limn→∞n... 设函数f(x)在点x0的某邻域内有定义,则f(x)在点x0可导的充分必要条件是
(A) 极限limΔx→0 f(x0+Δx)-f(x0-Δx)/Δx存在
(B) 极限lim n→∞ n[f(x0+1/n)-f(x0)]存在
(C)极限 lim t→∞ t [f(x0)-f(x0-1/t)]存在
(D)极限 lim h→0 f(x0+h^2)-f(x0)/h^2存在
选哪个
尤其是B和D怎么思考呢
还有一个问题
lim n→∞ [f(x0+1/n)-f(x0)]/(1/n)极限存在
函数f(x)在x0处为什么是 不一定 可导呢?
谢谢
展开
79284克街06
推荐于2018-04-17 · TA获得超过237个赞
知道答主
回答量:142
采纳率:33%
帮助的人:64.1万
展开全部
若lim f '(x0)=A,则lim[x→x0] [f(x)-f(x0)]/(x-x0)=A
因此lim[x→x0+] [f(x)-f(x0)]/(x-x0)=A
lim[x→x0-] [f(x)-f(x0)]/(x-x0)=A
则:f+'(x0)=f-'(x0)=A
反之:若f+'(x0)=f-'(x0)=A
则lim[x→x0+] [f(x)-f(x0)]/(x-x0)=A
lim[x→x0-] [f(x)-f(x0)]/(x-x0)=A

因此:lim[x→x0] [f(x)-f(x0)]/(x-x0)=A
即f '(x0)=A

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式