动点问题的详细解法??
2个回答
展开全部
“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静
关键:动中求静.
数学思想:分类思想、 函数思想 、方程思想、数形结合思想、转化思想
解法
1.建立函数解析式
函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系。
2.找变化过程中始终保持不变的量以及不变的等量关系
3.把几何问题转化为代数问题
关键:动中求静.
数学思想:分类思想、 函数思想 、方程思想、数形结合思想、转化思想
解法
1.建立函数解析式
函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系。
2.找变化过程中始终保持不变的量以及不变的等量关系
3.把几何问题转化为代数问题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-11-28
展开全部
动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静
关键:动中求静.
数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想
函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系, 一、应用勾股定理建立函数解析式
关键:动中求静.
数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想
函数揭示了运动变化过程中量与量之间的变化规律,和动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系, 一、应用勾股定理建立函数解析式
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询