已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)图象关于点(1,0)对称,若对任意的x,y∈R,不等
已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则...
已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是______.
展开
1个回答
展开全部
解:∵函数y=f(x-1)的图象关于点(1,0)对称,
∴函数y=f(x)的图象关于点(0,0)对称,
即函数y=f(x)为奇函数,则f(-x)=-f(x),
又∵f(x)是定义在R上的增函数且f(x2-6x+21)+f(y2-8y)<0恒成立
∴f(x2-6x+21)<-f(y2-8y)=f(8y-y2)恒成立,
∴x2-6x+21<8y-y2,
∴(x-3)2+(y-4)2<4恒成立,
设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,
则d=
表示区域内的点和原点的距离.
由下图可知:d的最小值是OA=
,
OB=OC+CB,5+2=7,
当x>3时,x2+y2的范围为(13,49).
故答案为:(13,49).
∴函数y=f(x)的图象关于点(0,0)对称,
即函数y=f(x)为奇函数,则f(-x)=-f(x),
又∵f(x)是定义在R上的增函数且f(x2-6x+21)+f(y2-8y)<0恒成立
∴f(x2-6x+21)<-f(y2-8y)=f(8y-y2)恒成立,
∴x2-6x+21<8y-y2,
∴(x-3)2+(y-4)2<4恒成立,
设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,
则d=
x2+y2 |
由下图可知:d的最小值是OA=
13 |
OB=OC+CB,5+2=7,
当x>3时,x2+y2的范围为(13,49).
故答案为:(13,49).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询