已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距.(Ⅰ)求椭

已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距.(Ⅰ)求椭圆C的方程;(Ⅱ)过点F的直线l与椭圆C交于不同的两... 已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),短轴的一个端点B到F的距离等于焦距.(Ⅰ)求椭圆C的方程;(Ⅱ)过点F的直线l与椭圆C交于不同的两点M,N,是否存在直线l,使得△BFM与△BFN的面积比值为2?若存在,求出直线l的方程;若不存在,说明理由. 展开
 我来答
回头醉人4673
2014-10-20 · 超过66用户采纳过TA的回答
知道答主
回答量:174
采纳率:0%
帮助的人:129万
展开全部
(Ⅰ)由已知得c=1,a=2c=2------------------(3分)
b=
a2?c2
=
3

∴椭圆C的方程为
x2
4
+
y2
3
=1
------------------(4分)
(Ⅱ)△BFM与△BFN的面积比值为2等价于FM与FN比值为2------------------(2分)
当直线l斜率不存在时,FM与FN比值为1,不符合题意,舍去;------------------(3分)
当直线l斜率存在时,设直线l的方程为y=k(x-1),
直线l的方程代入椭圆方程,消x并整理得(3+4k2)y2+6ky-9k2=0------------------(5分)
设M(x1,y1),N(x2,y2),则y1+y2=-
6k
3+4k2
 ①,y1y2=-
9k2
3+4k2
②------------------(7分)
由FM与FN比值为2得y1=-y2
由①②③解得k=±
5
2

因此存在直线l:y=±
5
2
(x-1)使得△BFM与△BFN的面积比值为2------------------(9分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式