设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+1x2(x∈R).(1)当x

设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+1x2(x∈R).(1)当x∈(0,1]时,求f(x)的解析式;(2)若... 设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2ax+1x2(x∈R).(1)当x∈(0,1]时,求f(x)的解析式;(2)若a>-1,试判断f(x)在(0,1]上的单调性,并证明你的结论 展开
 我来答
手机用户80541
2015-01-03 · TA获得超过148个赞
知道答主
回答量:114
采纳率:50%
帮助的人:110万
展开全部
(1)解:设x∈(0,1],则?x∈[?1,0),?f(?x)=?2ax+
1
x2

∵f(x)是奇函数,即f(-x)=-f(x)
f(x)=2ax?
1
x2
,?x∈(0,1]

(2)答:f(x)在(0,1]上单调递增.
证明:∵f′(x)=2a+
2
x3
=2(a+
1
x3
),?x∈(0,1]

1
x3
>1

又∵a>-1
a+
1
x3
>0

f′(x)=2(a+
1
x3
)>0

∴f(x)在(0,1]上单调递增.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式